References quoted in the ENSDF dataset: 32MG ADOPTED LEVELS, GAMMAS

46 references found.

Clicking on a keynumber will list datasets that reference the given article.


1979SY01

Phys.Rev.Lett. 42, 40 (1979)

T.J.M.Symons, Y.P.Viyogi, G.D.Westfall, P.Doll, D.E.Greiner, H.Faraggi, P.J.Lindstrom, D.K.Scott, H.J.Crawford, C.McParland

Observation of New Neutron-Rich Isotopes by Fragmentation of 205-MeV/Nucleon 40Ar Ions

NUCLEAR REACTIONS 12C(40Ar, X), E=205 MeV/nucleon; measured σ; deduced production σ for 26,27,28,29,30Na. 30,31Na, 27,28Ne, 31,32,33Mg deduced evidence for particle stability.

doi: 10.1103/PhysRevLett.42.40


1983DE04

Nucl.Phys. A394, 378 (1983)

C.Detraz, M.Langevin, M.C.Goffri-Kouassi, D.Guillemaud, M.Epherre, G.Audi, C.Thibault, F.Touchard

Mapping of the Onset of a New Region of Deformation: The masses of 31Mg and 32Mg

RADIOACTIVITY 31,32Na [from Ir(p, X), E=10 GeV]; measured Qβ. 31,32Mg deduced mass excess.

doi: 10.1016/0375-9474(83)90111-2


1984GU19

Nucl.Phys. A426, 37 (1984)

D.Guillemaud-Mueller, C.Detraz, M.Langevin, F.Naulin, M.De Saint-Simon, C.Thibault, F.Touchard, M.Epherre

β-Decay Schemes of very Neutron-Rich Sodium Isotopes and Their Descendants

RADIOACTIVITY 27,28,29,30,31,32,33,34Na, 29,30,31,32,33Mg, 32Al(β-) [from In(p, X), E=10 GeV]; measured Eγ, Iγ, βγγ-coin; deduced Iβ, log ft. 27,28,29,30,31,32Mg, 29,30,31Al, 32S deduced levels, γ-branching. 29,30,31,32Mg, 31Al deduced neutron emission probabilities.

doi: 10.1016/0375-9474(84)90064-2


1984LA03

Nucl.Phys. A414, 151 (1984)

M.Langevin, C.Detraz, D.Guillemaud-Mueller, A.C.Mueller, C.Thibault, F.Touchard, M.Epherre

β-Delayed Neutrons from very Neutron-Rich Sodium and Magnesium Isotopes

RADIOACTIVITY 29,30,31,32,34Na, 31,32,33,34Mg(β-n); measured β-delayed neutron emission, T1/2, βn-coin; deduced neutron emission probability. On-line mass spectrometer, 4π liquid scintillator β-coincident neutron detector.

doi: 10.1016/0375-9474(84)90502-5


1986VI09

Phys.Rev.Lett. 57, 3253 (1986)

D.J.Vieira, J.M.Wouters, K.Vaziri, R.H.Kraus, Jr., H.Wollnik, G.W.Butler, F.K.Wohn, A.H.Wapstra

Direct Mass Measurements of Neutron-Rich Light Nuclei near N = 20

NUCLEAR REACTIONS 232Th(p, X), E=800 MeV; measured fragment mass to charge spectra. 19C, 20,21N, 23O, 23,24,25,26F, 27,28Ne, 28,29,30Na, 30,31,32Mg, 32,33,34Al, 36Si, 37P deduced mass excess, two-neutron separation energy vs neutron number. Recoil spectrometer.

doi: 10.1103/PhysRevLett.57.3253


1987GI05

Phys.Lett. 192B, 39 (1987)

A.Gillibert, W.Mittig, L.Bianchi, A.Cunsolo, B.Fernandez, A.Foti, J.Gastebois, C.Gregoire, Y.Schutz, C.Stephan

New Mass Measurements Far From Stability

NUCLEAR REACTIONS Ta(40Ar, X), E=60 MeV/nucleon; measured fragment rigidity, tof. 17B, 19,20C, 20,21,22N, 23,24O, 24,25,26F, 27,28Ne, 30,31,32Na, 31,32,33Mg, 32,33,34,35Al, 36,37Si, 37,38P deduced mass excess.

doi: 10.1016/0370-2693(87)91138-5


1991OR01

Phys.Lett. 258B, 29 (1991)

N.A.Orr, W.Mittig, L.K.Fifield, M.Lewitowicz, E.Plagnol, Y.Schutz, Z.W.Long, L.Bianchi, A.Gillibert, A.V.Belozyorov, S.M.Lukyanov, Yu.E.Penionzhkevich, A.C.C.Villari, A.Cunsolo, A.Foti, G.Audi, C.Stephan, L.Tassan-Got

New Mass Measurements of Neutron-Rich Nuclei Near N = 20

NUCLEAR REACTIONS Ta(48Ca, X), E=55 MeV/nucleon; measured projectile like fragment spectra. 17,19B, 20C, 20,21,22N, 22,23,24O, 24,25,26,27F, 26,27,28,29,30Ne, 28,29,30,31,32,33Na, 30,31,32,33,34,35Mg, 32,33,34,35,36,37Al, 36,37Si, 37P deduced mass excess.

doi: 10.1016/0370-2693(91)91203-8


1991ZH24

Phys.Lett. 260B, 285 (1991)

X.G.Zhou, X.L.Tu, J.M.Wouters, D.J.Vieira, K.E.G.Lobner, H.L.Seifert, Z.Y.Zhou, G.W.Butler

Direct Mass Measurements of the Neutron-Rich Isotopes of Fluorine Through Chlorine

NUCLEAR REACTIONS Th(p, X), E=800 MeV; measured fragment mass, charge state ratio, velocity histograms. 24,25,26,27F, 27,28,29Ne, 30,31,32Na, 30,31,32,33,34Mg, 33,34,35,36Al, 36,37,38Si, 38,39,40,41P, 40,41,42,43S, 41,42,43,44Cl deduced mass excess.

doi: 10.1016/0370-2693(91)91613-Z


1995REZZ

Proc.Intern.Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p.587 (1995)

P.L.Reeder, Y.Kim, W.K.Hensley, H.S.Miley, R.A.Warner, Z.Y.Zhou, D.J.Vieira, J.M.Wouters, H.L.Seifert

Beta Decay Half-Lives and Delayed Particle Emission from TOFI Measurements

NUCLEAR REACTIONS 232Th(p, X), E=800 MeV; measured β(fragment)-coin; deduced T1/2 for 8Li to 45Cl. Tof isochronous spectrometer.

RADIOACTIVITY 25,26F, 28Ne, 35Mg, 33,36Ar, 41S, 44Cl(β-n) [from 232Th(p, X), E=800 MeV]; measured T1/2. 31,35Mg, 14B, 17C, 18N, 32,33,34,35Al, 36,37Si, 38P, 45Cl(β-n) [from 232Th(p, X), E=800 MeV]; measured neutron emission probabilities. Tof isochronous spectrometer.


1997SU04

Nucl.Phys. A616, 286c (1997)

T.Suzuki, H.Geissel, O.Bochkarev, L.Chulkov, M.Golovkov, D.Hirata, H.Irnich, Z.Janas, H.Keller, T.Kobayashi, G.Kraus, G.Munzenberg, S.Neumaier, F.Nickel, A.Ozawa, A.Piechaczek, E.Roeckl, W.Schwab, K.Summerer, K.Yoshida, I.Tanihata

Matter Radii of Na and Mg Isotopes

NUCLEAR REACTIONS C(20Na, X), (21Na, X), (22Na, X), (23Na, X), (25Na, X), (26Na, X), (27Na, X), (28Na, X), (29Na, X), (30Na, X), (31Na, X), (32Na, X), (20Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (27Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), E=950 MeV/nucleon; measured interaction σ. 32,31,30,29,28,27,26,25,23,22,21,20Na, 20,22,23,24,27,29,30,31,32Mg deduced effective rms radii, nucleon skin thickness related features.

doi: 10.1016/S0375-9474(97)00099-7


1997TA22

Phys.Lett. 409B, 64 (1997)

O.Tarasov, R.Allatt, J.C.Angelique, R.Anne, C.Borcea, Z.Dlouhy, C.Donzaud, S.Grevy, D.Guillemaud-Mueller, M.Lewitowicz, S.Lukyanov, A.C.Mueller, F.Nowacki, Yu.Oganessian, N.A.Orr, A.N.Ostrowski, R.D.Page, Yu.Penionzhkevich, F.Pougheon, A.Reed, M.G.Saint-Laurent, W.Schwab, E.Sokol, O.Sorlin, W.Trinder, J.S.Winfield

Search for 28O and Study of Neutron-Rich Nuclei Near the N = 20 Shell Closure

NUCLEAR REACTIONS Ta(36S, X)24Si/33Al/32Mg/31Na/30Ne/29F, E=78 MeV/nucleon; measured fragment yields. 28O deduced evidence for particle instability. LISE spectrometer.

RADIOACTIVITY 27,29F, 28,29,30Ne, 30,31Na(β-) [from Ta(36S, X), E=78 MeV/nucleon]; measured T1/2.

doi: 10.1016/S0370-2693(97)00901-5


1998SU07

Nucl.Phys. A630, 661 (1998)

T.Suzuki, H.Geissel, O.Bochkarev, L.Chulkov, M.Golovkov, N.Fukunishi, D.Hirata, H.Irnich, Z.Janas, H.Keller, T.Kobayashi, G.Kraus, G.Munzenberg, S.Neumaier, F.Nickel, A.Ozawa, A.Piechaczeck, E.Roeckl, W.Schwab, K.Summerer, K.Yoshida, I.Tanihata

Nuclear Radii of Na and Mg Isotopes

NUCLEAR REACTIONS C(20Na, X), (21Na, X), (22Na, X), (23Na, X), (25Na, X), (26Na, X), (27Na, X), (28Na, X), (29Na, X), (30Na, X), (31Na, X), (32Na, X), (20Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (27Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), E=950 MeV/nucleon; measured interaction σ. 20,21,22,23,25,26,27,28,29,30,31,32Na, 20,22,23,24,27,29,30,31,32Mg deduced rms radii, neutron, proton skin features. Shell model calculations.

doi: 10.1016/S0375-9474(97)00799-9


2001LU20

Hyperfine Interactions 132, 299 (2001)

D.Lunney, C.Monsanglant, G.Audi, G.Bollen, C.Borcea, H.Doubre, C.Gaulard, S.Henry, M.de Saint Simon, C.Thibault, C.Toader, N.Vieira, and the ISOLDE Collaboration

Recent Results on Ne and Mg from the MISTRAL Mass Measurement Program at ISOLDE

ATOMIC MASSES 25,26Ne, 32Mg; measured masses. Comparison with previous results.


2001PE14

Yad.Fiz. 64, No 6, 1197 (2001); Phys.Atomic Nuclei 64, 1121 (2001)

Yu.E.Penionzhkevich

Research on Neutron-Rich Nuclei in the Region of the Nuclear Shells N = 20 and N = 28

NUCLEAR REACTIONS Be(36S, X)19B/22C/31F/32Mg, E=77 MeV/nucleon; measured Eγ, Iγ, yields.

RADIOACTIVITY 22N, 24O, 25,27,29F, 27,28,29,30Ne, 30,31Na(β-); measured T1/2, neutron-emission probability.

ATOMIC MASSES Z=12-20; A=28-50; measured two-neutron separation energies. Direct time-of-flight technique.

doi: 10.1134/1.1383628


2003BA52

Phys.Rev.Lett. 91, 012501 (2003)

D.Bazin, B.A.Brown, C.M.Campbell, J.A.Church, D.C.Dinca, J.Enders, A.Gade, T.Glasmacher, P.G.Hansen, W.F.Mueller, H.Olliver, B.C.Perry, B.M.Sherrill, J.R.Terry, J.A.Tostevin

New Direct Reaction: Two-Proton Knockout from Neutron-Rich Nuclei

NUCLEAR REACTIONS 9Be(28Mg, 26Ne), E=82 MeV/nucleon; 9Be(30Mg, 28Ne), E=82 MeV/nucleon; 9Be(34Si, 32Mg), E=67 MeV/nucleon; measured Eγ, Iγ, particle parallel-momentum distributions; 28Mg(9Be, X)26Ne, 30Mg(9Be, X)28Ne, 34Si(9Be, X)32Mg; deduced direct mechanism for two-proton knockout. Comparison with model predictions.

doi: 10.1103/PhysRevLett.91.012501


2004GR08

Nucl.Phys. A734, 369 (2004)

S.Grevy, S.Pietri, L.Achouri, J.C.Angelique, P.Baumann, C.Borcea, A.Buta, W.Catford, S.Courtin, J.M.Daugas, F.De Oliveira, P.Dessagne, Z.Dlouhy, D.Guillemaud-Mueller, R.Hadeler, A.Knipper, F.R.Lecolley, J.L.Lecouey, M.Lewitowicz, E.Lienard, C.Miehe, J.Mrazek, F.Negoita, N.A.Orr, Y.Penionzhkevich, J.Peter, E.Poirier, M.Stanoiu, O.Tarasov, C.Timis, G.Walter

Spectroscopy at the N = 20 shell closure: the β-decay of 32Mg

RADIOACTIVITY 32Mg(β-), (β-n) [from Be(36S, X)]; measured Eγ, Iγ, γγ-coin, T1/2, β-delayed neutron spectra; deduced neutron emission probability. 32Al deduced levels, J, π, β-feeding intensities.

doi: 10.1016/j.nuclphysa.2004.01.068


2005MA81

J.Phys.(London) G31, S1421 (2005)

H.Mach, P.M.Walker, R.Julin, M.Leino, S.Juutinen, M.Stanoiu, Zs.Podolyak, R.Wood, A.M.Bruce, T.Back, J.A.Cameron, B.Cederwall, J.Ekman, B.Fogelberg, P.T.Greenlees, M.Hellstrom, P.Jones, W.Klamra, K.Lagergren, A.-P.Leppanen, P.Nieminen, R.Orlandi, J.Pakarinen, P.Rahkila, D.Rudolph, G.Simpson, J.Uusitalo, C.Wheldon

Application of ultra-fast timing techniques to the study of exotic and weakly produced nuclei

RADIOACTIVITY 32Na, 80Ga(β-); measured Eγ, Iγ, γγ-, βγ-coin. 32Mg, 80Ge levels deduced T1/2. Ultra-fast timing techniques.

NUCLEAR REACTIONS 40Ca(14N, n2p), E not given; measured Eγ, Iγ, γγ-coin. 51Mn levels deduced T1/2. Ultra-fast timing techniques.

NUCLEAR STRUCTURE 48V; analyzed data; deduced levels T1/2. Ultra-fast timing techniques.

doi: 10.1088/0954-3899/31/10/007


2005MA96

Eur.Phys.J. A 25, Supplement 1, 105 (2005)

H.Mach, L.M.Fraile, O.Tengblad, R.Boutami, C.Jollet, W.A.Plociennik, D.T.Yordanov, M.Stanoiu, M.J.G.Borge, P.A.Butler, J.Cederkall, Ph.Dessagne, B.Fogelberg, H.Fynbo, P.Hoff, A.Jokinen, A.Korgul, U.Koster, W.Kurcewicz, F.Marechal, T.Motobayashi, J.Mrazek, G.Neyens, T.Nilsson, S.Pedersen, A.Poves, B.Rubio, E.Ruchowska, and the ISOLDE Collaboration

New structure information on 30Mg, 31Mg and 32Mg

RADIOACTIVITY 30,31,32Na(β-); 31,32Na(β-n); measured Eγ, Iγ, γγ-, βγ-coin. 30,31,32Mg deduced levels T1/2. Ultra-fast timing techniques.

doi: 10.1140/epjad/i2005-06-159-0


2006GA04

Nucl.Phys. A766, 52 (2006)

C.Gaulard, G.Audi, C.Bachelet, D.Lunney, M.de Saint Simon, C.Thibault, N.Vieira

Accurate mass measurements of 26Ne, 26-30Na, 29-33Mg performed with the MISTRAL spectrometer

ATOMIC MASSES 26Na, 29,30,31,32,33Mg; measured mass. 26Ne, 26,27,28,29,30Na, 29,32Mg; analyzed mass from previous measurements. Transmission mass spectrometer.

doi: 10.1016/j.nuclphysa.2005.12.007


2006KH08

Nucl.Phys. A780, 1 (2006)

A.Khouaja, A.C.C.Villari, M.Benjelloun, D.Hirata, G.Auger, H.Savajols, W.Mittig, P.Roussel-Chomaz, N.A.Orr, M.G.Saint-Laurent, S.Pita, A.Gillibert, M.Chartier, C.E.Demonchy, L.Giot, D.Baiborodin, Y.Penionzhkevich, W.N.Catford, A.Lepine-Szily, Z.Dlouhy

Reaction cross-section and reduced strong absorption radius measurements of neutron-rich nuclei in the vicinity of closed shells N = 20 and N = 28

NUCLEAR REACTIONS Si(17N, X), (18N, X), (19N, X), (20N, X), (21N, X), (22N, X), (19O, X), (20O, X), (21O, X), (22O, X), (23O, X), (24O, X), (21F, X), (22F, X), (23F, X), (24F, X), (25F, X), (26F, X), (27F, X), (23Ne, X), (24Ne, X), (25Ne, X), (26Ne, X), (27Ne, X), (28Ne, X), (29Ne, X), (30Ne, X), (26Na, X), (27Na, X), (28Na, X), (29Na, X), (30Na, X), (31Na, X), (32Na, X), (33Na, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (31Al, X), (32Al, X), (33Al, X), (34Al, X), (35Al, X), (36Al, X), (37Al, X), (38Al, X), (33Si, X), (34Si, X), (35Si, X), (36Si, X), (37Si, X), (38Si, X), (39Si, X), (40Si, X), (36P, X), (37P, X), (38P, X), (39P, X), (40P, X), (41P, X), (42P, X), (39S, X), (40S, X), (41S, X), (42S, X), (43S, X), (44S, X), (42Cl, X), (43Cl, X), (44Cl, X), (45Cl, X), (45Ar, X), (46Ar, X), E=30-65 MeV/nucleon; measured energy-integrated reaction σ. 17,18,19,20,21,22N, 19,20,21,22,23,24O, 21,22,23,24,25,26,27F, 23,24,25,26,27,28,29,30Ne, 26,27,28,29,30,31,32,33Na, 28,29,30,31,32,33,34,35Mg, 31,32,33,34,35,36,37,38Al, 33,34,35,36,37,38,39,40Si, 36,37,38,39,40,41,42P, 39,40,41,42,43,44S, 42,43,44,45Cl, 45,46Ar; deduced radii, isospin dependence. 35Mg, 44S; deduced possible halo structure or large deformation.

doi: 10.1016/j.nuclphysa.2006.07.042


2006LU09

Eur.Phys.J. A 28, 129 (2006)

D.Lunney, G.Audi, C.Gaulard, M.de Saint Simon, C.Thibault, N.Vieira

High-precision masses of 29-33Mg and the N = 20 shell "closure"

ATOMIC MASSES 29,30,31,32,33Mg; measured mass. Comparison with other measurements and theory. Transmission mass spectrometer.

doi: 10.1140/epja/i2005-10281-1


2008KI07

Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)

T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.

Evaluation of theoretical conversion coefficients using BrIcc

COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.

doi: 10.1016/j.nima.2008.02.051


2008TR04

Phys.Rev. C 77, 034310 (2008)

V.Tripathi, S.L.Tabor, P.Bender, C.R.Hoffman, S.Lee, K.Pepper, M.Perry, P.F.Mantica, J.M.Cook, J.Pereira, J.S.Pinter, J.B.Stoker, D.Weisshaar, Y.Utsuno, T.Otsuka

Excited intruder states in 32Mg

NUCLEAR REACTIONS 9Be(48Ca, X)30Na/31Na/32Na/33Mg, E=140 MeV/nucleon; measured yields.

RADIOACTIVITY 32Na(β-), (β-n) [from 9Be(48Ca, X), E=140 MeV/nucleon]; measured Eγ, Iγ, γγ-coin, half-lives; deduced Iβ, B(GT), logft. 32Mg; deduced levels, Jπ. 26,28,30,34,36Mg, 28,30,32,34,36,38Si; systematics. Comparison with shell-model calculations.

doi: 10.1103/PhysRevC.77.034310


2010FA04

Phys.Rev. C 81, 041302 (2010)

P.Fallon, E.Rodriguez-Vieitez, A.O.Macchiavelli, A.Gade, J.A.Tostevin, P.Adrich, D.Bazin, M.Bowen, C.M.Campbell, R.M.Clark, J.M.Cook, M.Cromaz, D.C.Dinca, T.Glasmacher, I.Y.Lee, S.McDaniel, W.F.Mueller, S.G.Prussin, A.Ratkiewicz, K.Siwek, J.R.Terry, D.Weisshaar, M.Wiedeking, K.Yoneda, B.A.Brown, T.Otsuka, Y.Utsuno

Two-proton knockout from 32Mg: Intruder amplitudes in 30Ne and implications for the binding of 29, 31F

NUCLEAR REACTIONS 9Be(32Mg, 30Ne), E=86.7, 99.7 MeV/nucleon; measured Eγ, Iγ, and σ using SeGA array. 32Mg beam from 9Be(48Ca, X), E=140 MeV/nucleon. 30Ne; deduced levels, J, π, intruder configuration. 29,31F; discussed implications for binding energies. 32Mg; deduced configuration. Comparison with large-scale shell model calculations.

doi: 10.1103/PhysRevC.81.041302


2010WI11

Phys.Rev.Lett. 105, 252501 (2010)

K.Wimmer, T.Kroll, R.Krucken, V.Bildstein, R.Gernhauser, B.Bastin, N.Bree, J.Diriken, P.Van Duppen, M.Huyse, N.Patronis, P.Vermaelen, D.Voulot, J.Van de Walle, F.Wenander, L.M.Fraile, R.Chapman, B.Hadinia, R.Orlandi, J.F.Smith, R.Lutter, P.G.Thirolf, M.Labiche, A.Blazhev, M.Kalkuhler, P.Reiter, M.Seidlitz, N.Warr, A.O.Macchiavelli, H.B.Jeppesen, E.Fiori, G.Georgiev, G.Schrieder, S.Das Gupta, G.Lo Bianco, S.Nardelli, J.Butterworth, J.Johansen, K.Riisager

Discovery of the Shape Coexisting 0 State in 32Mg by a Two Neutron Transfer Reaction

NUCLEAR REACTIONS 3H(30Mg, p), E=1.8 MeV/nucleon; measured recoil proton spectrum, Eγ, Iγ, pγ-coinc. 32Mg; deduced excitation energies, σ(θ), shape coexistence. Comparison with Monte Carlo shell-model calculations.

doi: 10.1103/PhysRevLett.105.252501


2011KA01

Phys.Rev. C 83, 021302 (2011)

R.Kanungo, A.Prochazka, W.Horiuchi, C.Nociforo, T.Aumann, D.Boutin, D.Cortina-Gil, B.Davids, M.Diakaki, F.Farinon, H.Geissel, R.Gernhauser, J.Gerl, R.Janik, B.Jonson, B.Kindler, R.Knobel, R.Krucken, M.Lantz, H.Lenske, Y.Litvinov, B.Lommel, K.Mahata, P.Maierbeck, A.Musumarra, T.Nilsson, C.Perro, C.Scheidenberger, B.Sitar, P.Strmen, B.Sun, Y.Suzuki, I.Szarka, I.Tanihata, Y.Utsuno, H.Weick, M.Winkler

Matter radii of 32-35Mg

NUCLEAR REACTIONS C, H(32Mg, X), (33Mg, X)(34Mg, X)(35Mg, X), E=900 MeV/nucleon, [secondary Mg beams from Be(48Ca, X) primary reaction]; measured interaction cross sections by detecting unreacted Mg particles by Bρ-ΔE-TOF method. 32,33,34,35Mg; deduced matter radii by Glauber model analysis. Comparison with HF and RMF predictions. Neutron skin thickness.

doi: 10.1103/PhysRevC.83.021302


2012YO01

Phys.Rev.Lett. 108, 042504 (2012)

D.T.Yordanov, M.L.Bissell, K.Blaum, M.De Rydt, Ch.Geppert, M.Kowalska, J.Kramer, K.Kreim, A.Krieger, P.Lievens, T.Neff, R.Neugart, G.Neyens, W.Nortershauser, R.Sanchez, P.Vingerhoets

Nuclear Charge Radii of 21-32Mg

ATOMIC PHYSICS 21,22,23,24,25,26,27,28,29,30,31,32Mg; measured the atomic isotope shift representing the transition frequencies with respect to the fine structure levels; deduced rms charge radii, evolution of nuclear shape through deformation regions. Comparison with theory and differential mean square radii, application of laser-induced orientation for isotope shift measurements.

doi: 10.1103/PhysRevLett.108.042504


2013CH49

Phys.Rev. C 88, 054317 (2013)

A.Chaudhuri, C.Andreoiu, T.Brunner, U.Chowdhury, S.Ettenauer, A.T.Gallant, G.Gwinner, A.A.Kwiatkowski, A.Lennarz, D.Lunney, T.D.Macdonald, B.E.Schultz, M.C.Simon, V.V.Simon, J.Dilling

Evidence for the extinction of the N=20 neutron-shell closure for 32Mg from direct mass measurements

ATOMIC MASSES 29,30,31Na, 30,31,32,33,34Mg; measured Time-of-flight (TOF) ion-cyclotron resonances using TITAN Penning trap at ISAC-TRIUMF with respect to 16O and 39K references. Comparison with previous experimental data and with AME evaluations. Systematics of S(2n) values for N=18-24 Na and Mg isotopes; and experimental and theoretical neutron shell gap N=20, Z=10-22 nuclei. Discussed magicity of N=20 shell closure.

doi: 10.1103/PhysRevC.88.054317


2015ME06

J.Phys.(London) G42, 093101 (2015)

J.Meng, S.G.Zhou

Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum

NUCLEAR STRUCTURE 9,11Li, 66Ca, 198Ce, 110,140,170Sn, 32Ne, 32,38,40,42Mg, 19O; calculated single-particle levels, J, π, quadrupole deformation parameters, halo. Covariant density functional theory.

doi: 10.1088/0954-3899/42/9/093101


2016MA10

J.Phys.(London) G43, 024006 (2016)

K.Matsuyanagi, M.Matsuo, T.Nakatsukasa, K.Yoshida, N.Hinohara, K.Sato

Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence/mixing dynamics

NUCLEAR STRUCTURE 72Kr, 30,32,34Mg; calculated potential energy surfaces, J, π, energy levels. Large-amplitude collective motions (LACM).

doi: 10.1088/0954-3899/43/2/024006


2016MA73

Phys.Rev. C 94, 051303 (2016)

A.O.Macchiavelli, H.L.Crawford, C.M.Campbell, R.M.Clark, M.Cromaz, P.Fallon, M.D.Jones, I.Y.Lee, M.Salathe, B.A.Brown, A.Poves

The 30Mg(t, p)32Mg "puzzle" reexamined

NUCLEAR STRUCTURE 32Mg; calculated energies and wave-function amplitudes of first three 0+ states, mixing strength required to reproduce the experimental energy of the second 0+ state. Phenomenological three-level mixing model of unperturbed 0p0h, 2p2h, and 4p4h states.

NUCLEAR REACTIONS 30Mg(t, p)32Mg, E not given; calculated cross-section ratio σ(second 0+)/σ(first 0+) in 2n-transfer reaction using 32Mg wave-function amplitudes from three-level mixing model calculations. Comparison with experimental data, and resolution of the puzzle resulting from a two-state mixing model.

doi: 10.1103/PhysRevC.94.051303


2016PO03

J.Phys.(London) G43, 024010 (2016)

A.Poves

Shape coexistence: the shell model view

NUCLEAR STRUCTURE 40Ca, 68Ni, 32Mg, 64Cr, 72Kr; calculated energies, super deformed bands, J, π; deduced shape coexistence.

doi: 10.1088/0954-3899/43/2/024010


2016SU20

Phys.Rev. C 94, 024343 (2016)

Y.Suzuki, H.Nakada, S.Miyahara

Effects of a realistic tensor force on nuclear quadrupole deformation near the "shore" of the island of inversion

NUCLEAR STRUCTURE 30Ne, 32,40Mg, 34,42Si, 44S; calculated intrinsic mass quadrupole moment, deformation parameter β, and energies at the lowest and second lowest minima, proton and neutron single-particle levels; deduced effects of the tensor force on deformation. Constrained Hartree-Fock calculations assuming axial symmetry with M3Y-type semirealistic interaction containing a realistic tensor force. Comparison with available experimental results.

doi: 10.1103/PhysRevC.94.024343


2017DE15

Phys.Rev. C 95, 054329 (2017)

V.De Donno, G.Co, M.Anguiano, A.M.Lallena

Pairing in spherical nuclei: Quasiparticle random-phase approximation calculations with the Gogny interaction

NUCLEAR STRUCTURE 16,18,20,22,24,26O, 40,42,44,46,48,50,52,54,56,58,60,62Ca, 30Ne, 32Mg, 34Si, 36S, 38Ar, 40Ca, 42Ti, 44Cr, 46Fe; calculated energies of 1-, 2+ and 3- levels, B(E2) for the first 2+ states, B(M1) values of 1+ states, occupation probabilities for 36S, 38Ar, 54,56Ca, energies and B(E1) of first three 1- states in 18O. 20O, 50Ca; calculated B(E1) and transition densities for the states identified as pygmy dipole resonances (PDR). Hartree-Fock, Bardeen, Cooper, and Schrieffer, and quasiparticle random-phase-approximation (HF+BCS+QRPA and QRPA(F)) calculations with finite-range interaction of Gogny type . Comparison with experimental data.

doi: 10.1103/PhysRevC.95.054329


2017HA23

Phys.Lett. B 772, 529 (2017)

R.Han, X.Q.Li, W.G.Jiang, Z.H.Li, H.Hua, S.Q.Zhang, C.X.Yuan, D.X.Jiang, Y.L.Ye, J.Li, Z.H.Li, F.R.Xu, Q.B.Chen, J.Meng, J.S.Wang, C.Xu, Y.L.Sun, C.G.Wang, H.Y.Wu, C.Y.Niu, C.G.Li, C.He, W.Jiang, P.J.Li, H.L.Zang, J.Feng, S.D.Chen, Q.Liu, X.C.Chen, H.S.Xu, Z.G.Hu, Y.Y.Yang, P.Ma, J.B.Ma, S.L.Jin, Z.Bai, M.R.Huang, Y.J.Zhou, W.H.Ma, Y.Li, X.H.Zhou, Y.H.Zhang, G.Q.Xiao, W.L.Zhan

Northern boundary of the "island of inversion" and triaxiality in 34Si

RADIOACTIVITY 34Al(β-) [from 9Be(40Ar, X), E=69.2 MeV/nucleon]; measured decay products, Eγ, Iγ; deduced γ-ray energies, J, π, isomer T1/2. Comparison with shell model calculations using Gogny D1S and SDPF-M interactions.

RADIOACTIVITY 27,28Ne, 28,29,30,31Na, 30,31,32,33Mg, 32,33,34,35Al, 36,37Si(β-); measured decay products; deduced T1/2. Comparison with ENSDF values.

doi: 10.1016/j.physletb.2017.07.007


2018VA09

Phys.Rev. C 98, 011302 (2018)

J.J.Valiente-Dobon, A.Poves, A.Gadea, B.Fernandez-Dominguez

Broken mirror symmetry in 36S and 36Ca

NUCLEAR STRUCTURE 36Ca, 36S; 38Ca, 38Ar; 34Ca, 34Si; 32Ca, 32Mg; calculated low lying levels, J, π, mirror energy difference (MED) between mirror nuclei. 36Ca; predicted first excited 0+ state at 2.7 MeV, 250 keV below the first 2+ state, B(E2) for the first 2+ state, and ρ2(E0). Shell model with configuration interaction, using sdpfu-mix effective interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.98.011302


2019EL09

Phys.Rev. C 100, 041301 (2019)

R.Elder, H.Iwasaki, J.Ash, D.Bazin, P.C.Bender, T.Braunroth, B.A.Brown, C.M.Campbell, H.L.Crawford, B.Elman, A.Gade, M.Grinder, N.Kobayashi, B.Longfellow, A.O.Macchiavelli, T.Mijatovic, J.Pereira, A.Revel, D.Rhodes, J.A.Tostevin, D.Weisshaar

Intruder dominance in the 0+2 state of 32Mg studied with a novel technique for in-flight decays

NUCLEAR REACTIONS 9Be(34Si, 32Mg), (34Si, 31Mg), E=86 MeV/nucleon, [secondary 34Si beam from 9Be(48Ca, X), E=140 MeV/nucleon and separated using A1900 fragment separator at NSCL-MSU]; measured reaction products identified by time-of-flight and energy-loss measurements using the S800 spectrograph, Eγ, Iγ, (particle)γ-coin, level half-life for the first excited 0+ state using GRETINA array. 32Mg; deduced levels, excited 0+ level, B(E2) for excited 0+ to the first 2+ state. Comparison with B(E2) values for the first 2+ and excited 0+ states in 30,32Mg and 34Si. New method to study isomeric states decaying in-flight. Discussed collective behavior of the first excited 0+ state in 32Mg. 31Mg; deduced levels, isomer half-life.

doi: 10.1103/PhysRevC.100.041301


2019SA23

Hyperfine Interactions 240, 37 (2019)

A.Saxena, A.Kumar, V.Kumar, P.C.Srivastava, T.Suzuki

Ab initio description of collectivity for sd shell nuclei

NUCLEAR STRUCTURE 20Ne, 24,32Mg, 34Si; calculated energy levels, J, π, B(E2) values. Comparison with experimental data.

doi: 10.1007/s10751-019-1582-y


2020MI15

Phys.Rev. C 102, 034320 (2020)

T.Miyagi, S.R.Stroberg, J.D.Holt, N.Shimizu

Ab initio multishell valence-space Hamiltonians and the island of inversion

NUCLEAR STRUCTURE 16O; calculated levels, J, π, single-particle energies with 4He core and psd valence space, ground-state energies and expectation values of the Hamiltonian with the 4He and p, pd5/2, pd5/2s1/2, and psd valence spaces. 26,28,30,32,34Ne, 28,30,32,34,36Mg, 30,32,34,36,38Si; calculated excitation energies of the first excited 0+ states, and the number of exciting neutrons from sd to pf orbits. 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37Ne, 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39Mg, 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42Si; calculated ground-state energies, S(2n), energies of the first 2+ states and corresponding B(E2) values for even-even nuclei. 26,30Ne, 32Mg, 34Si; calculated energies and B(E2) of the 0+ and 2+ excited states from sd and sdf7/2p3/2 orbitals. 14,15,16,17,18,19,20,21,22O; calculated ground-state energies and charge radii. 40,41,42,43,44,45,46,47,48Ca; calculated changes in charge radii. Valence-space in-medium similarity renormalization group (VS-IMSRG) approach to derive the first multishell valence-space Hamiltonians from ab initio theory for calculation of properties of nuclei in the island-of-inversion region above oxygen. Comparison with experimental data.

doi: 10.1103/PhysRevC.102.034320


2020TS03

Nature(London) 587, 66 (2020)

N.Tsunoda, T.Otsuka, K.Takayanagi, N.Shimizu, T.Suzuki, Y.Utsuno, S.Yoshida, H.Ueno

The impact of nuclear shape on the emergence of the neutron dripline

NUCLEAR STRUCTURE 22,24,26,28,30,32,34,36Ne, 24,26,28,30,32,34,36,38,40,42Mg, 23,25,27,29,31,33,35,37Na, 19,21,23,25,27,29F; analyzed available data; calculated 2+ and 4+ energies using configuration interaction, ground-state energies, dripline, magic numbers, J, π and energy levels using nucleon-nucleon interactions, nuclear shapes. Comparison with ENSDF library, available data; deduced mechanism for the formation of the neutron dripline.

doi: 10.1038/s41586-020-2848-x


2021EL06

Phys.Rev. C 104, 024307 (2021)

R.Elder, H.Iwasaki, J.Ash, D.Bazin, P.C.Bender, T.Braunroth, C.M.Campbell, H.L.Crawford, B.Elman, A.Gade, M.Grinder, N.Kobayashi, B.Longfellow, T.Mijatovic, J.Pereira, A.Revel, D.Rhodes, D.Weisshaar

Lifetime measurements probing collectivity in the ground-state band of 32Mg

NUCLEAR REACTIONS 9Be(34Si, 32Mg), (34Si, 30Mg), E=60 MeV/nucleon, [secondary 34Si beam from 9Be(48Ca, X), E=140 meV/nucleon primary reaction, followed by separation of fragments using A1900 fragment separator at the NSCL-Coupled Cyclotron Facility]; measured reaction products by time-of-flight and energy-loss measurements using the S800 spectrograph, Eγ, Iγ, (32Mg)γ-coin, half-lives of the first 2+ and 4+ levels in 32Mg and first 2+ in 30Mg using GRETINA array for γ detection and TRIPLEX plunger device. 30,32Mg; deduced levels, J, π, B(E2). Comparison with shell-model calculations using SDPF-M, SDPF-U-MIX, AMPGCM, EKK, USDA and CHFB+LQRPA interactions, and with previous experimental B(E2) results. Systematics of measured B(E2) for first 2+ state in even-even Z=12 isotopes from N=16 to N=24, and those of theoretical B(E2) from N=16 to N=28.

doi: 10.1103/PhysRevC.104.024307


2021IN02

Int.J.Mod.Phys. E30, 2150009 (2021)

E.J.In, P.Papakonstantinou, Y.Kim, S.-W.Hong

Neutron drip line in the deformed relativistic Hartree-Bogoliubov theory in continuum: Oxygen to Calcium

NUCLEAR STRUCTURE 22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 30,31,32,33,34,35,36,37,38,39,40Si, 34,35,36,37,38,39,40,41,42S, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ar; calculated deformation parameters.

doi: 10.1142/S0218301321500099


2021KU13

Acta Phys.Pol. B52, 401 (2021)

P.Kumar, V.Thakur, S.Thakur, V.Kumar, S.K.Dhiman

Evolution of Nuclear Shapes in Light Nuclei from Proton- to Neutron-rich Side

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42Mg, 22,24,26,28,30,32,34,36,38,40,42,44Si, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56S, 28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58Ar; calculated binding energies, quadrupole deformation parameter, charge radii, and isotope shifts using the relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-exchange interaction and separable pairing. Comparison with available data.

doi: 10.5506/aphyspolb.52.401


2021TA32

Ukr.J.Phys. 66, 928 (2021)

A.H.Taqi, M.A.Hasan

Skyrme-Hartree-Fock-Bogoliubov Calculations of Even and Odd Neutron-Rich Mg Isotopes

NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Mg; calculated binding energies, one- and two-neutron separation energies, quadrupole deformation parameters, neutron and proton radii. Hartree-Fock-Bogoliubov calculations based on the D1S Gogny force, and predictions of some nuclear models such as the Finite Range Droplet Model (FRDM) and Relativistic Mean-Field (RMF)model.

doi: 10.15407/ujpe66.11.928


2021WA16

Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

The AME 2020 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

doi: 10.1088/1674-1137/abddaf


2022KI08

Phys.Rev. C 105, 034318 (2022)

N.Kitamura, K.Wimmer, T.Miyagi, A.Poves, N.Shimizu, J.A.Tostevin, V.M.Bader, C.Bancroft, D.Barofsky, T.Baugher, D.Bazin, J.S.Berryman, V.Bildstein, A.Gade, N.Imai, T.Kroll, C.Langer, J.Lloyd, E.Lunderberg, F.Nowacki, G.Perdikakis, F.Recchia, T.Redpath, S.Saenz, D.Smalley, S.R.Stroberg, Y.Utsuno, D.Weisshaar, A.Westerberg

In-beam γ-ray spectroscopy of 32Mg via direct reactions

NUCLEAR REACTIONS 9Be(33Mg, n), E=99.6 MeV/nucleon; 9Be(34Si, 2p), E=94.8 MeV/nucleon; measured reaction products, Eγ, Iγ, γγ-coin; deduced inclusive and exclusive σ, momentum distribution, spectroscopic factors. 32Mg; deduced, levels, J, π, configurations, structure of ground-state rotational band. Comparison to shell-model calculations using SDPF-M, SDPF-U-MIX, EEdf1 and IMSRG interactions. Systematics of low-spin levels for N=20 isotones (32Mg, 34Si, 36S, 38Ar, 40Ca). GRETINA at NSCL-MSU.

doi: 10.1103/PhysRevC.105.034318