References quoted in the ENSDF dataset: 32MG ADOPTED LEVELS, GAMMAS
46 references found.
Clicking on a keynumber will list datasets that reference the given article.
Phys.Rev.Lett. 42, 40 (1979)
T.J.M.Symons, Y.P.Viyogi, G.D.Westfall, P.Doll, D.E.Greiner, H.Faraggi, P.J.Lindstrom, D.K.Scott, H.J.Crawford, C.McParland
Observation of New Neutron-Rich Isotopes by Fragmentation of 205-MeV/Nucleon 40Ar Ions
NUCLEAR REACTIONS 12C(40Ar, X), E=205 MeV/nucleon; measured σ; deduced production σ for 26,27,28,29,30Na. 30,31Na, 27,28Ne, 31,32,33Mg deduced evidence for particle stability.
doi: 10.1103/PhysRevLett.42.40
Nucl.Phys. A394, 378 (1983)
C.Detraz, M.Langevin, M.C.Goffri-Kouassi, D.Guillemaud, M.Epherre, G.Audi, C.Thibault, F.Touchard
Mapping of the Onset of a New Region of Deformation: The masses of 31Mg and 32Mg
RADIOACTIVITY 31,32Na [from Ir(p, X), E=10 GeV]; measured Qβ. 31,32Mg deduced mass excess.
doi: 10.1016/0375-9474(83)90111-2
Nucl.Phys. A426, 37 (1984)
D.Guillemaud-Mueller, C.Detraz, M.Langevin, F.Naulin, M.De Saint-Simon, C.Thibault, F.Touchard, M.Epherre
β-Decay Schemes of very Neutron-Rich Sodium Isotopes and Their Descendants
RADIOACTIVITY 27,28,29,30,31,32,33,34Na, 29,30,31,32,33Mg, 32Al(β-) [from In(p, X), E=10 GeV]; measured Eγ, Iγ, βγγ-coin; deduced Iβ, log ft. 27,28,29,30,31,32Mg, 29,30,31Al, 32S deduced levels, γ-branching. 29,30,31,32Mg, 31Al deduced neutron emission probabilities.
doi: 10.1016/0375-9474(84)90064-2
Nucl.Phys. A414, 151 (1984)
M.Langevin, C.Detraz, D.Guillemaud-Mueller, A.C.Mueller, C.Thibault, F.Touchard, M.Epherre
β-Delayed Neutrons from very Neutron-Rich Sodium and Magnesium Isotopes
RADIOACTIVITY 29,30,31,32,34Na, 31,32,33,34Mg(β-n); measured β-delayed neutron emission, T1/2, βn-coin; deduced neutron emission probability. On-line mass spectrometer, 4π liquid scintillator β-coincident neutron detector.
doi: 10.1016/0375-9474(84)90502-5
Phys.Rev.Lett. 57, 3253 (1986)
D.J.Vieira, J.M.Wouters, K.Vaziri, R.H.Kraus, Jr., H.Wollnik, G.W.Butler, F.K.Wohn, A.H.Wapstra
Direct Mass Measurements of Neutron-Rich Light Nuclei near N = 20
NUCLEAR REACTIONS 232Th(p, X), E=800 MeV; measured fragment mass to charge spectra. 19C, 20,21N, 23O, 23,24,25,26F, 27,28Ne, 28,29,30Na, 30,31,32Mg, 32,33,34Al, 36Si, 37P deduced mass excess, two-neutron separation energy vs neutron number. Recoil spectrometer.
doi: 10.1103/PhysRevLett.57.3253
Phys.Lett. 192B, 39 (1987)
A.Gillibert, W.Mittig, L.Bianchi, A.Cunsolo, B.Fernandez, A.Foti, J.Gastebois, C.Gregoire, Y.Schutz, C.Stephan
New Mass Measurements Far From Stability
NUCLEAR REACTIONS Ta(40Ar, X), E=60 MeV/nucleon; measured fragment rigidity, tof. 17B, 19,20C, 20,21,22N, 23,24O, 24,25,26F, 27,28Ne, 30,31,32Na, 31,32,33Mg, 32,33,34,35Al, 36,37Si, 37,38P deduced mass excess.
doi: 10.1016/0370-2693(87)91138-5
Phys.Lett. 258B, 29 (1991)
N.A.Orr, W.Mittig, L.K.Fifield, M.Lewitowicz, E.Plagnol, Y.Schutz, Z.W.Long, L.Bianchi, A.Gillibert, A.V.Belozyorov, S.M.Lukyanov, Yu.E.Penionzhkevich, A.C.C.Villari, A.Cunsolo, A.Foti, G.Audi, C.Stephan, L.Tassan-Got
New Mass Measurements of Neutron-Rich Nuclei Near N = 20
NUCLEAR REACTIONS Ta(48Ca, X), E=55 MeV/nucleon; measured projectile like fragment spectra. 17,19B, 20C, 20,21,22N, 22,23,24O, 24,25,26,27F, 26,27,28,29,30Ne, 28,29,30,31,32,33Na, 30,31,32,33,34,35Mg, 32,33,34,35,36,37Al, 36,37Si, 37P deduced mass excess.
doi: 10.1016/0370-2693(91)91203-8
Phys.Lett. 260B, 285 (1991)
X.G.Zhou, X.L.Tu, J.M.Wouters, D.J.Vieira, K.E.G.Lobner, H.L.Seifert, Z.Y.Zhou, G.W.Butler
Direct Mass Measurements of the Neutron-Rich Isotopes of Fluorine Through Chlorine
NUCLEAR REACTIONS Th(p, X), E=800 MeV; measured fragment mass, charge state ratio, velocity histograms. 24,25,26,27F, 27,28,29Ne, 30,31,32Na, 30,31,32,33,34Mg, 33,34,35,36Al, 36,37,38Si, 38,39,40,41P, 40,41,42,43S, 41,42,43,44Cl deduced mass excess.
doi: 10.1016/0370-2693(91)91613-Z
Proc.Intern.Conf on Exotic Nuclei and Atomic Masses, Arles, France, June 19-23, 1995, p.587 (1995)
P.L.Reeder, Y.Kim, W.K.Hensley, H.S.Miley, R.A.Warner, Z.Y.Zhou, D.J.Vieira, J.M.Wouters, H.L.Seifert
Beta Decay Half-Lives and Delayed Particle Emission from TOFI Measurements
NUCLEAR REACTIONS 232Th(p, X), E=800 MeV; measured β(fragment)-coin; deduced T1/2 for 8Li to 45Cl. Tof isochronous spectrometer.
RADIOACTIVITY 25,26F, 28Ne, 35Mg, 33,36Ar, 41S, 44Cl(β-n) [from 232Th(p, X), E=800 MeV]; measured T1/2. 31,35Mg, 14B, 17C, 18N, 32,33,34,35Al, 36,37Si, 38P, 45Cl(β-n) [from 232Th(p, X), E=800 MeV]; measured neutron emission probabilities. Tof isochronous spectrometer.
Nucl.Phys. A616, 286c (1997)
T.Suzuki, H.Geissel, O.Bochkarev, L.Chulkov, M.Golovkov, D.Hirata, H.Irnich, Z.Janas, H.Keller, T.Kobayashi, G.Kraus, G.Munzenberg, S.Neumaier, F.Nickel, A.Ozawa, A.Piechaczek, E.Roeckl, W.Schwab, K.Summerer, K.Yoshida, I.Tanihata
Matter Radii of Na and Mg Isotopes
NUCLEAR REACTIONS C(20Na, X), (21Na, X), (22Na, X), (23Na, X), (25Na, X), (26Na, X), (27Na, X), (28Na, X), (29Na, X), (30Na, X), (31Na, X), (32Na, X), (20Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (27Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), E=950 MeV/nucleon; measured interaction σ. 32,31,30,29,28,27,26,25,23,22,21,20Na, 20,22,23,24,27,29,30,31,32Mg deduced effective rms radii, nucleon skin thickness related features.
doi: 10.1016/S0375-9474(97)00099-7
Phys.Lett. 409B, 64 (1997)
O.Tarasov, R.Allatt, J.C.Angelique, R.Anne, C.Borcea, Z.Dlouhy, C.Donzaud, S.Grevy, D.Guillemaud-Mueller, M.Lewitowicz, S.Lukyanov, A.C.Mueller, F.Nowacki, Yu.Oganessian, N.A.Orr, A.N.Ostrowski, R.D.Page, Yu.Penionzhkevich, F.Pougheon, A.Reed, M.G.Saint-Laurent, W.Schwab, E.Sokol, O.Sorlin, W.Trinder, J.S.Winfield
Search for 28O and Study of Neutron-Rich Nuclei Near the N = 20 Shell Closure
NUCLEAR REACTIONS Ta(36S, X)24Si/33Al/32Mg/31Na/30Ne/29F, E=78 MeV/nucleon; measured fragment yields. 28O deduced evidence for particle instability. LISE spectrometer.
RADIOACTIVITY 27,29F, 28,29,30Ne, 30,31Na(β-) [from Ta(36S, X), E=78 MeV/nucleon]; measured T1/2.
doi: 10.1016/S0370-2693(97)00901-5
Nucl.Phys. A630, 661 (1998)
T.Suzuki, H.Geissel, O.Bochkarev, L.Chulkov, M.Golovkov, N.Fukunishi, D.Hirata, H.Irnich, Z.Janas, H.Keller, T.Kobayashi, G.Kraus, G.Munzenberg, S.Neumaier, F.Nickel, A.Ozawa, A.Piechaczeck, E.Roeckl, W.Schwab, K.Summerer, K.Yoshida, I.Tanihata
Nuclear Radii of Na and Mg Isotopes
NUCLEAR REACTIONS C(20Na, X), (21Na, X), (22Na, X), (23Na, X), (25Na, X), (26Na, X), (27Na, X), (28Na, X), (29Na, X), (30Na, X), (31Na, X), (32Na, X), (20Mg, X), (22Mg, X), (23Mg, X), (24Mg, X), (25Mg, X), (27Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), E=950 MeV/nucleon; measured interaction σ. 20,21,22,23,25,26,27,28,29,30,31,32Na, 20,22,23,24,27,29,30,31,32Mg deduced rms radii, neutron, proton skin features. Shell model calculations.
doi: 10.1016/S0375-9474(97)00799-9
Hyperfine Interactions 132, 299 (2001)
D.Lunney, C.Monsanglant, G.Audi, G.Bollen, C.Borcea, H.Doubre, C.Gaulard, S.Henry, M.de Saint Simon, C.Thibault, C.Toader, N.Vieira, and the ISOLDE Collaboration
Recent Results on Ne and Mg from the MISTRAL Mass Measurement Program at ISOLDE
ATOMIC MASSES 25,26Ne, 32Mg; measured masses. Comparison with previous results.
Yad.Fiz. 64, No 6, 1197 (2001); Phys.Atomic Nuclei 64, 1121 (2001)
Yu.E.Penionzhkevich
Research on Neutron-Rich Nuclei in the Region of the Nuclear Shells N = 20 and N = 28
NUCLEAR REACTIONS Be(36S, X)19B/22C/31F/32Mg, E=77 MeV/nucleon; measured Eγ, Iγ, yields.
RADIOACTIVITY 22N, 24O, 25,27,29F, 27,28,29,30Ne, 30,31Na(β-); measured T1/2, neutron-emission probability.
ATOMIC MASSES Z=12-20; A=28-50; measured two-neutron separation energies. Direct time-of-flight technique.
doi: 10.1134/1.1383628
Phys.Rev.Lett. 91, 012501 (2003)
D.Bazin, B.A.Brown, C.M.Campbell, J.A.Church, D.C.Dinca, J.Enders, A.Gade, T.Glasmacher, P.G.Hansen, W.F.Mueller, H.Olliver, B.C.Perry, B.M.Sherrill, J.R.Terry, J.A.Tostevin
New Direct Reaction: Two-Proton Knockout from Neutron-Rich Nuclei
NUCLEAR REACTIONS 9Be(28Mg, 26Ne), E=82 MeV/nucleon; 9Be(30Mg, 28Ne), E=82 MeV/nucleon; 9Be(34Si, 32Mg), E=67 MeV/nucleon; measured Eγ, Iγ, particle parallel-momentum distributions; 28Mg(9Be, X)26Ne, 30Mg(9Be, X)28Ne, 34Si(9Be, X)32Mg; deduced direct mechanism for two-proton knockout. Comparison with model predictions.
doi: 10.1103/PhysRevLett.91.012501
Nucl.Phys. A734, 369 (2004)
S.Grevy, S.Pietri, L.Achouri, J.C.Angelique, P.Baumann, C.Borcea, A.Buta, W.Catford, S.Courtin, J.M.Daugas, F.De Oliveira, P.Dessagne, Z.Dlouhy, D.Guillemaud-Mueller, R.Hadeler, A.Knipper, F.R.Lecolley, J.L.Lecouey, M.Lewitowicz, E.Lienard, C.Miehe, J.Mrazek, F.Negoita, N.A.Orr, Y.Penionzhkevich, J.Peter, E.Poirier, M.Stanoiu, O.Tarasov, C.Timis, G.Walter
Spectroscopy at the N = 20 shell closure: the β-decay of 32Mg
RADIOACTIVITY 32Mg(β-), (β-n) [from Be(36S, X)]; measured Eγ, Iγ, γγ-coin, T1/2, β-delayed neutron spectra; deduced neutron emission probability. 32Al deduced levels, J, π, β-feeding intensities.
doi: 10.1016/j.nuclphysa.2004.01.068
J.Phys.(London) G31, S1421 (2005)
H.Mach, P.M.Walker, R.Julin, M.Leino, S.Juutinen, M.Stanoiu, Zs.Podolyak, R.Wood, A.M.Bruce, T.Back, J.A.Cameron, B.Cederwall, J.Ekman, B.Fogelberg, P.T.Greenlees, M.Hellstrom, P.Jones, W.Klamra, K.Lagergren, A.-P.Leppanen, P.Nieminen, R.Orlandi, J.Pakarinen, P.Rahkila, D.Rudolph, G.Simpson, J.Uusitalo, C.Wheldon
Application of ultra-fast timing techniques to the study of exotic and weakly produced nuclei
RADIOACTIVITY 32Na, 80Ga(β-); measured Eγ, Iγ, γγ-, βγ-coin. 32Mg, 80Ge levels deduced T1/2. Ultra-fast timing techniques.
NUCLEAR REACTIONS 40Ca(14N, n2p), E not given; measured Eγ, Iγ, γγ-coin. 51Mn levels deduced T1/2. Ultra-fast timing techniques.
NUCLEAR STRUCTURE 48V; analyzed data; deduced levels T1/2. Ultra-fast timing techniques.
doi: 10.1088/0954-3899/31/10/007
Eur.Phys.J. A 25, Supplement 1, 105 (2005)
H.Mach, L.M.Fraile, O.Tengblad, R.Boutami, C.Jollet, W.A.Plociennik, D.T.Yordanov, M.Stanoiu, M.J.G.Borge, P.A.Butler, J.Cederkall, Ph.Dessagne, B.Fogelberg, H.Fynbo, P.Hoff, A.Jokinen, A.Korgul, U.Koster, W.Kurcewicz, F.Marechal, T.Motobayashi, J.Mrazek, G.Neyens, T.Nilsson, S.Pedersen, A.Poves, B.Rubio, E.Ruchowska, and the ISOLDE Collaboration
New structure information on 30Mg, 31Mg and 32Mg
RADIOACTIVITY 30,31,32Na(β-); 31,32Na(β-n); measured Eγ, Iγ, γγ-, βγ-coin. 30,31,32Mg deduced levels T1/2. Ultra-fast timing techniques.
doi: 10.1140/epjad/i2005-06-159-0
Nucl.Phys. A766, 52 (2006)
C.Gaulard, G.Audi, C.Bachelet, D.Lunney, M.de Saint Simon, C.Thibault, N.Vieira
Accurate mass measurements of 26Ne, 26-30Na, 29-33Mg performed with the MISTRAL spectrometer
ATOMIC MASSES 26Na, 29,30,31,32,33Mg; measured mass. 26Ne, 26,27,28,29,30Na, 29,32Mg; analyzed mass from previous measurements. Transmission mass spectrometer.
doi: 10.1016/j.nuclphysa.2005.12.007
Nucl.Phys. A780, 1 (2006)
A.Khouaja, A.C.C.Villari, M.Benjelloun, D.Hirata, G.Auger, H.Savajols, W.Mittig, P.Roussel-Chomaz, N.A.Orr, M.G.Saint-Laurent, S.Pita, A.Gillibert, M.Chartier, C.E.Demonchy, L.Giot, D.Baiborodin, Y.Penionzhkevich, W.N.Catford, A.Lepine-Szily, Z.Dlouhy
Reaction cross-section and reduced strong absorption radius measurements of neutron-rich nuclei in the vicinity of closed shells N = 20 and N = 28
NUCLEAR REACTIONS Si(17N, X), (18N, X), (19N, X), (20N, X), (21N, X), (22N, X), (19O, X), (20O, X), (21O, X), (22O, X), (23O, X), (24O, X), (21F, X), (22F, X), (23F, X), (24F, X), (25F, X), (26F, X), (27F, X), (23Ne, X), (24Ne, X), (25Ne, X), (26Ne, X), (27Ne, X), (28Ne, X), (29Ne, X), (30Ne, X), (26Na, X), (27Na, X), (28Na, X), (29Na, X), (30Na, X), (31Na, X), (32Na, X), (33Na, X), (28Mg, X), (29Mg, X), (30Mg, X), (31Mg, X), (32Mg, X), (33Mg, X), (34Mg, X), (35Mg, X), (31Al, X), (32Al, X), (33Al, X), (34Al, X), (35Al, X), (36Al, X), (37Al, X), (38Al, X), (33Si, X), (34Si, X), (35Si, X), (36Si, X), (37Si, X), (38Si, X), (39Si, X), (40Si, X), (36P, X), (37P, X), (38P, X), (39P, X), (40P, X), (41P, X), (42P, X), (39S, X), (40S, X), (41S, X), (42S, X), (43S, X), (44S, X), (42Cl, X), (43Cl, X), (44Cl, X), (45Cl, X), (45Ar, X), (46Ar, X), E=30-65 MeV/nucleon; measured energy-integrated reaction σ. 17,18,19,20,21,22N, 19,20,21,22,23,24O, 21,22,23,24,25,26,27F, 23,24,25,26,27,28,29,30Ne, 26,27,28,29,30,31,32,33Na, 28,29,30,31,32,33,34,35Mg, 31,32,33,34,35,36,37,38Al, 33,34,35,36,37,38,39,40Si, 36,37,38,39,40,41,42P, 39,40,41,42,43,44S, 42,43,44,45Cl, 45,46Ar; deduced radii, isospin dependence. 35Mg, 44S; deduced possible halo structure or large deformation.
doi: 10.1016/j.nuclphysa.2006.07.042
Eur.Phys.J. A 28, 129 (2006)
D.Lunney, G.Audi, C.Gaulard, M.de Saint Simon, C.Thibault, N.Vieira
High-precision masses of 29-33Mg and the N = 20 shell "closure"
ATOMIC MASSES 29,30,31,32,33Mg; measured mass. Comparison with other measurements and theory. Transmission mass spectrometer.
doi: 10.1140/epja/i2005-10281-1
Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)
T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.
Evaluation of theoretical conversion coefficients using BrIcc
COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.
doi: 10.1016/j.nima.2008.02.051
Phys.Rev. C 77, 034310 (2008)
V.Tripathi, S.L.Tabor, P.Bender, C.R.Hoffman, S.Lee, K.Pepper, M.Perry, P.F.Mantica, J.M.Cook, J.Pereira, J.S.Pinter, J.B.Stoker, D.Weisshaar, Y.Utsuno, T.Otsuka
Excited intruder states in 32Mg
NUCLEAR REACTIONS 9Be(48Ca, X)30Na/31Na/32Na/33Mg, E=140 MeV/nucleon; measured yields.
RADIOACTIVITY 32Na(β-), (β-n) [from 9Be(48Ca, X), E=140 MeV/nucleon]; measured Eγ, Iγ, γγ-coin, half-lives; deduced Iβ, B(GT), logft. 32Mg; deduced levels, Jπ. 26,28,30,34,36Mg, 28,30,32,34,36,38Si; systematics. Comparison with shell-model calculations.
doi: 10.1103/PhysRevC.77.034310
Phys.Rev. C 81, 041302 (2010)
P.Fallon, E.Rodriguez-Vieitez, A.O.Macchiavelli, A.Gade, J.A.Tostevin, P.Adrich, D.Bazin, M.Bowen, C.M.Campbell, R.M.Clark, J.M.Cook, M.Cromaz, D.C.Dinca, T.Glasmacher, I.Y.Lee, S.McDaniel, W.F.Mueller, S.G.Prussin, A.Ratkiewicz, K.Siwek, J.R.Terry, D.Weisshaar, M.Wiedeking, K.Yoneda, B.A.Brown, T.Otsuka, Y.Utsuno
Two-proton knockout from 32Mg: Intruder amplitudes in 30Ne and implications for the binding of 29, 31F
NUCLEAR REACTIONS 9Be(32Mg, 30Ne), E=86.7, 99.7 MeV/nucleon; measured Eγ, Iγ, and σ using SeGA array. 32Mg beam from 9Be(48Ca, X), E=140 MeV/nucleon. 30Ne; deduced levels, J, π, intruder configuration. 29,31F; discussed implications for binding energies. 32Mg; deduced configuration. Comparison with large-scale shell model calculations.
doi: 10.1103/PhysRevC.81.041302
Phys.Rev.Lett. 105, 252501 (2010)
K.Wimmer, T.Kroll, R.Krucken, V.Bildstein, R.Gernhauser, B.Bastin, N.Bree, J.Diriken, P.Van Duppen, M.Huyse, N.Patronis, P.Vermaelen, D.Voulot, J.Van de Walle, F.Wenander, L.M.Fraile, R.Chapman, B.Hadinia, R.Orlandi, J.F.Smith, R.Lutter, P.G.Thirolf, M.Labiche, A.Blazhev, M.Kalkuhler, P.Reiter, M.Seidlitz, N.Warr, A.O.Macchiavelli, H.B.Jeppesen, E.Fiori, G.Georgiev, G.Schrieder, S.Das Gupta, G.Lo Bianco, S.Nardelli, J.Butterworth, J.Johansen, K.Riisager
Discovery of the Shape Coexisting 0 State in 32Mg by a Two Neutron Transfer Reaction
NUCLEAR REACTIONS 3H(30Mg, p), E=1.8 MeV/nucleon; measured recoil proton spectrum, Eγ, Iγ, pγ-coinc. 32Mg; deduced excitation energies, σ(θ), shape coexistence. Comparison with Monte Carlo shell-model calculations.
doi: 10.1103/PhysRevLett.105.252501
Phys.Rev. C 83, 021302 (2011)
R.Kanungo, A.Prochazka, W.Horiuchi, C.Nociforo, T.Aumann, D.Boutin, D.Cortina-Gil, B.Davids, M.Diakaki, F.Farinon, H.Geissel, R.Gernhauser, J.Gerl, R.Janik, B.Jonson, B.Kindler, R.Knobel, R.Krucken, M.Lantz, H.Lenske, Y.Litvinov, B.Lommel, K.Mahata, P.Maierbeck, A.Musumarra, T.Nilsson, C.Perro, C.Scheidenberger, B.Sitar, P.Strmen, B.Sun, Y.Suzuki, I.Szarka, I.Tanihata, Y.Utsuno, H.Weick, M.Winkler
Matter radii of 32-35Mg
NUCLEAR REACTIONS C, H(32Mg, X), (33Mg, X)(34Mg, X)(35Mg, X), E=900 MeV/nucleon, [secondary Mg beams from Be(48Ca, X) primary reaction]; measured interaction cross sections by detecting unreacted Mg particles by Bρ-ΔE-TOF method. 32,33,34,35Mg; deduced matter radii by Glauber model analysis. Comparison with HF and RMF predictions. Neutron skin thickness.
doi: 10.1103/PhysRevC.83.021302
Phys.Rev.Lett. 108, 042504 (2012)
D.T.Yordanov, M.L.Bissell, K.Blaum, M.De Rydt, Ch.Geppert, M.Kowalska, J.Kramer, K.Kreim, A.Krieger, P.Lievens, T.Neff, R.Neugart, G.Neyens, W.Nortershauser, R.Sanchez, P.Vingerhoets
Nuclear Charge Radii of 21-32Mg
ATOMIC PHYSICS 21,22,23,24,25,26,27,28,29,30,31,32Mg; measured the atomic isotope shift representing the transition frequencies with respect to the fine structure levels; deduced rms charge radii, evolution of nuclear shape through deformation regions. Comparison with theory and differential mean square radii, application of laser-induced orientation for isotope shift measurements.
doi: 10.1103/PhysRevLett.108.042504
Phys.Rev. C 88, 054317 (2013)
A.Chaudhuri, C.Andreoiu, T.Brunner, U.Chowdhury, S.Ettenauer, A.T.Gallant, G.Gwinner, A.A.Kwiatkowski, A.Lennarz, D.Lunney, T.D.Macdonald, B.E.Schultz, M.C.Simon, V.V.Simon, J.Dilling
Evidence for the extinction of the N=20 neutron-shell closure for 32Mg from direct mass measurements
ATOMIC MASSES 29,30,31Na, 30,31,32,33,34Mg; measured Time-of-flight (TOF) ion-cyclotron resonances using TITAN Penning trap at ISAC-TRIUMF with respect to 16O and 39K references. Comparison with previous experimental data and with AME evaluations. Systematics of S(2n) values for N=18-24 Na and Mg isotopes; and experimental and theoretical neutron shell gap N=20, Z=10-22 nuclei. Discussed magicity of N=20 shell closure.
doi: 10.1103/PhysRevC.88.054317
J.Phys.(London) G42, 093101 (2015)
J.Meng, S.G.Zhou
Halos in medium-heavy and heavy nuclei with covariant density functional theory in continuum
NUCLEAR STRUCTURE 9,11Li, 66Ca, 198Ce, 110,140,170Sn, 32Ne, 32,38,40,42Mg, 19O; calculated single-particle levels, J, π, quadrupole deformation parameters, halo. Covariant density functional theory.
doi: 10.1088/0954-3899/42/9/093101
J.Phys.(London) G43, 024006 (2016)
K.Matsuyanagi, M.Matsuo, T.Nakatsukasa, K.Yoshida, N.Hinohara, K.Sato
Microscopic derivation of the quadrupole collective Hamiltonian for shape coexistence/mixing dynamics
NUCLEAR STRUCTURE 72Kr, 30,32,34Mg; calculated potential energy surfaces, J, π, energy levels. Large-amplitude collective motions (LACM).
doi: 10.1088/0954-3899/43/2/024006
Phys.Rev. C 94, 051303 (2016)
A.O.Macchiavelli, H.L.Crawford, C.M.Campbell, R.M.Clark, M.Cromaz, P.Fallon, M.D.Jones, I.Y.Lee, M.Salathe, B.A.Brown, A.Poves
The 30Mg(t, p)32Mg "puzzle" reexamined
NUCLEAR STRUCTURE 32Mg; calculated energies and wave-function amplitudes of first three 0+ states, mixing strength required to reproduce the experimental energy of the second 0+ state. Phenomenological three-level mixing model of unperturbed 0p0h, 2p2h, and 4p4h states.
NUCLEAR REACTIONS 30Mg(t, p)32Mg, E not given; calculated cross-section ratio σ(second 0+)/σ(first 0+) in 2n-transfer reaction using 32Mg wave-function amplitudes from three-level mixing model calculations. Comparison with experimental data, and resolution of the puzzle resulting from a two-state mixing model.
doi: 10.1103/PhysRevC.94.051303
J.Phys.(London) G43, 024010 (2016)
A.Poves
Shape coexistence: the shell model view
NUCLEAR STRUCTURE 40Ca, 68Ni, 32Mg, 64Cr, 72Kr; calculated energies, super deformed bands, J, π; deduced shape coexistence.
doi: 10.1088/0954-3899/43/2/024010
Phys.Rev. C 94, 024343 (2016)
Y.Suzuki, H.Nakada, S.Miyahara
Effects of a realistic tensor force on nuclear quadrupole deformation near the "shore" of the island of inversion
NUCLEAR STRUCTURE 30Ne, 32,40Mg, 34,42Si, 44S; calculated intrinsic mass quadrupole moment, deformation parameter β, and energies at the lowest and second lowest minima, proton and neutron single-particle levels; deduced effects of the tensor force on deformation. Constrained Hartree-Fock calculations assuming axial symmetry with M3Y-type semirealistic interaction containing a realistic tensor force. Comparison with available experimental results.
doi: 10.1103/PhysRevC.94.024343
Phys.Rev. C 95, 054329 (2017)
V.De Donno, G.Co, M.Anguiano, A.M.Lallena
Pairing in spherical nuclei: Quasiparticle random-phase approximation calculations with the Gogny interaction
NUCLEAR STRUCTURE 16,18,20,22,24,26O, 40,42,44,46,48,50,52,54,56,58,60,62Ca, 30Ne, 32Mg, 34Si, 36S, 38Ar, 40Ca, 42Ti, 44Cr, 46Fe; calculated energies of 1-, 2+ and 3- levels, B(E2) for the first 2+ states, B(M1) values of 1+ states, occupation probabilities for 36S, 38Ar, 54,56Ca, energies and B(E1) of first three 1- states in 18O. 20O, 50Ca; calculated B(E1) and transition densities for the states identified as pygmy dipole resonances (PDR). Hartree-Fock, Bardeen, Cooper, and Schrieffer, and quasiparticle random-phase-approximation (HF+BCS+QRPA and QRPA(F)) calculations with finite-range interaction of Gogny type . Comparison with experimental data.
doi: 10.1103/PhysRevC.95.054329
Phys.Lett. B 772, 529 (2017)
R.Han, X.Q.Li, W.G.Jiang, Z.H.Li, H.Hua, S.Q.Zhang, C.X.Yuan, D.X.Jiang, Y.L.Ye, J.Li, Z.H.Li, F.R.Xu, Q.B.Chen, J.Meng, J.S.Wang, C.Xu, Y.L.Sun, C.G.Wang, H.Y.Wu, C.Y.Niu, C.G.Li, C.He, W.Jiang, P.J.Li, H.L.Zang, J.Feng, S.D.Chen, Q.Liu, X.C.Chen, H.S.Xu, Z.G.Hu, Y.Y.Yang, P.Ma, J.B.Ma, S.L.Jin, Z.Bai, M.R.Huang, Y.J.Zhou, W.H.Ma, Y.Li, X.H.Zhou, Y.H.Zhang, G.Q.Xiao, W.L.Zhan
Northern boundary of the "island of inversion" and triaxiality in 34Si
RADIOACTIVITY 34Al(β-) [from 9Be(40Ar, X), E=69.2 MeV/nucleon]; measured decay products, Eγ, Iγ; deduced γ-ray energies, J, π, isomer T1/2. Comparison with shell model calculations using Gogny D1S and SDPF-M interactions.
RADIOACTIVITY 27,28Ne, 28,29,30,31Na, 30,31,32,33Mg, 32,33,34,35Al, 36,37Si(β-); measured decay products; deduced T1/2. Comparison with ENSDF values.
doi: 10.1016/j.physletb.2017.07.007
Phys.Rev. C 98, 011302 (2018)
J.J.Valiente-Dobon, A.Poves, A.Gadea, B.Fernandez-Dominguez
Broken mirror symmetry in 36S and 36Ca
NUCLEAR STRUCTURE 36Ca, 36S; 38Ca, 38Ar; 34Ca, 34Si; 32Ca, 32Mg; calculated low lying levels, J, π, mirror energy difference (MED) between mirror nuclei. 36Ca; predicted first excited 0+ state at 2.7 MeV, 250 keV below the first 2+ state, B(E2) for the first 2+ state, and ρ2(E0). Shell model with configuration interaction, using sdpfu-mix effective interaction. Comparison with experimental data.
doi: 10.1103/PhysRevC.98.011302
Phys.Rev. C 100, 041301 (2019)
R.Elder, H.Iwasaki, J.Ash, D.Bazin, P.C.Bender, T.Braunroth, B.A.Brown, C.M.Campbell, H.L.Crawford, B.Elman, A.Gade, M.Grinder, N.Kobayashi, B.Longfellow, A.O.Macchiavelli, T.Mijatovic, J.Pereira, A.Revel, D.Rhodes, J.A.Tostevin, D.Weisshaar
Intruder dominance in the 0+2 state of 32Mg studied with a novel technique for in-flight decays
NUCLEAR REACTIONS 9Be(34Si, 32Mg), (34Si, 31Mg), E=86 MeV/nucleon, [secondary 34Si beam from 9Be(48Ca, X), E=140 MeV/nucleon and separated using A1900 fragment separator at NSCL-MSU]; measured reaction products identified by time-of-flight and energy-loss measurements using the S800 spectrograph, Eγ, Iγ, (particle)γ-coin, level half-life for the first excited 0+ state using GRETINA array. 32Mg; deduced levels, excited 0+ level, B(E2) for excited 0+ to the first 2+ state. Comparison with B(E2) values for the first 2+ and excited 0+ states in 30,32Mg and 34Si. New method to study isomeric states decaying in-flight. Discussed collective behavior of the first excited 0+ state in 32Mg. 31Mg; deduced levels, isomer half-life.
doi: 10.1103/PhysRevC.100.041301
Hyperfine Interactions 240, 37 (2019)
A.Saxena, A.Kumar, V.Kumar, P.C.Srivastava, T.Suzuki
Ab initio description of collectivity for sd shell nuclei
NUCLEAR STRUCTURE 20Ne, 24,32Mg, 34Si; calculated energy levels, J, π, B(E2) values. Comparison with experimental data.
doi: 10.1007/s10751-019-1582-y
Phys.Rev. C 102, 034320 (2020)
T.Miyagi, S.R.Stroberg, J.D.Holt, N.Shimizu
Ab initio multishell valence-space Hamiltonians and the island of inversion
NUCLEAR STRUCTURE 16O; calculated levels, J, π, single-particle energies with 4He core and psd valence space, ground-state energies and expectation values of the Hamiltonian with the 4He and p, pd5/2, pd5/2s1/2, and psd valence spaces. 26,28,30,32,34Ne, 28,30,32,34,36Mg, 30,32,34,36,38Si; calculated excitation energies of the first excited 0+ states, and the number of exciting neutrons from sd to pf orbits. 20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37Ne, 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39Mg, 24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42Si; calculated ground-state energies, S(2n), energies of the first 2+ states and corresponding B(E2) values for even-even nuclei. 26,30Ne, 32Mg, 34Si; calculated energies and B(E2) of the 0+ and 2+ excited states from sd and sdf7/2p3/2 orbitals. 14,15,16,17,18,19,20,21,22O; calculated ground-state energies and charge radii. 40,41,42,43,44,45,46,47,48Ca; calculated changes in charge radii. Valence-space in-medium similarity renormalization group (VS-IMSRG) approach to derive the first multishell valence-space Hamiltonians from ab initio theory for calculation of properties of nuclei in the island-of-inversion region above oxygen. Comparison with experimental data.
doi: 10.1103/PhysRevC.102.034320
Nature(London) 587, 66 (2020)
N.Tsunoda, T.Otsuka, K.Takayanagi, N.Shimizu, T.Suzuki, Y.Utsuno, S.Yoshida, H.Ueno
The impact of nuclear shape on the emergence of the neutron dripline
NUCLEAR STRUCTURE 22,24,26,28,30,32,34,36Ne, 24,26,28,30,32,34,36,38,40,42Mg, 23,25,27,29,31,33,35,37Na, 19,21,23,25,27,29F; analyzed available data; calculated 2+ and 4+ energies using configuration interaction, ground-state energies, dripline, magic numbers, J, π and energy levels using nucleon-nucleon interactions, nuclear shapes. Comparison with ENSDF library, available data; deduced mechanism for the formation of the neutron dripline.
doi: 10.1038/s41586-020-2848-x
Phys.Rev. C 104, 024307 (2021)
R.Elder, H.Iwasaki, J.Ash, D.Bazin, P.C.Bender, T.Braunroth, C.M.Campbell, H.L.Crawford, B.Elman, A.Gade, M.Grinder, N.Kobayashi, B.Longfellow, T.Mijatovic, J.Pereira, A.Revel, D.Rhodes, D.Weisshaar
Lifetime measurements probing collectivity in the ground-state band of 32Mg
NUCLEAR REACTIONS 9Be(34Si, 32Mg), (34Si, 30Mg), E=60 MeV/nucleon, [secondary 34Si beam from 9Be(48Ca, X), E=140 meV/nucleon primary reaction, followed by separation of fragments using A1900 fragment separator at the NSCL-Coupled Cyclotron Facility]; measured reaction products by time-of-flight and energy-loss measurements using the S800 spectrograph, Eγ, Iγ, (32Mg)γ-coin, half-lives of the first 2+ and 4+ levels in 32Mg and first 2+ in 30Mg using GRETINA array for γ detection and TRIPLEX plunger device. 30,32Mg; deduced levels, J, π, B(E2). Comparison with shell-model calculations using SDPF-M, SDPF-U-MIX, AMPGCM, EKK, USDA and CHFB+LQRPA interactions, and with previous experimental B(E2) results. Systematics of measured B(E2) for first 2+ state in even-even Z=12 isotopes from N=16 to N=24, and those of theoretical B(E2) from N=16 to N=28.
doi: 10.1103/PhysRevC.104.024307
Int.J.Mod.Phys. E30, 2150009 (2021)
E.J.In, P.Papakonstantinou, Y.Kim, S.-W.Hong
Neutron drip line in the deformed relativistic Hartree-Bogoliubov theory in continuum: Oxygen to Calcium
NUCLEAR STRUCTURE 22,23,24,25,26,27,28,29,30,31,32,33,34Ne, 26,27,28,29,30,31,32,33,34,35,36,37,38Mg, 30,31,32,33,34,35,36,37,38,39,40Si, 34,35,36,37,38,39,40,41,42S, 38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ar; calculated deformation parameters.
doi: 10.1142/S0218301321500099
Acta Phys.Pol. B52, 401 (2021)
P.Kumar, V.Thakur, S.Thakur, V.Kumar, S.K.Dhiman
Evolution of Nuclear Shapes in Light Nuclei from Proton- to Neutron-rich Side
NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42Mg, 22,24,26,28,30,32,34,36,38,40,42,44Si, 26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56S, 28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58Ar; calculated binding energies, quadrupole deformation parameter, charge radii, and isotope shifts using the relativistic Hartree-Bogoliubov (RHB) model with density-dependent meson-exchange interaction and separable pairing. Comparison with available data.
Ukr.J.Phys. 66, 928 (2021)
A.H.Taqi, M.A.Hasan
Skyrme-Hartree-Fock-Bogoliubov Calculations of Even and Odd Neutron-Rich Mg Isotopes
NUCLEAR STRUCTURE 20,22,24,26,28,30,32,34,36,38,40,42,44,46,48,50,52,54,56,58,60Mg; calculated binding energies, one- and two-neutron separation energies, quadrupole deformation parameters, neutron and proton radii. Hartree-Fock-Bogoliubov calculations based on the D1S Gogny force, and predictions of some nuclear models such as the Finite Range Droplet Model (FRDM) and Relativistic Mean-Field (RMF)model.
Chin.Phys.C 45, 030003 (2021)
M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi
The AME 2020 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.
Phys.Rev. C 105, 034318 (2022)
N.Kitamura, K.Wimmer, T.Miyagi, A.Poves, N.Shimizu, J.A.Tostevin, V.M.Bader, C.Bancroft, D.Barofsky, T.Baugher, D.Bazin, J.S.Berryman, V.Bildstein, A.Gade, N.Imai, T.Kroll, C.Langer, J.Lloyd, E.Lunderberg, F.Nowacki, G.Perdikakis, F.Recchia, T.Redpath, S.Saenz, D.Smalley, S.R.Stroberg, Y.Utsuno, D.Weisshaar, A.Westerberg
In-beam γ-ray spectroscopy of 32Mg via direct reactions
NUCLEAR REACTIONS 9Be(33Mg, n), E=99.6 MeV/nucleon; 9Be(34Si, 2p), E=94.8 MeV/nucleon; measured reaction products, Eγ, Iγ, γγ-coin; deduced inclusive and exclusive σ, momentum distribution, spectroscopic factors. 32Mg; deduced, levels, J, π, configurations, structure of ground-state rotational band. Comparison to shell-model calculations using SDPF-M, SDPF-U-MIX, EEdf1 and IMSRG interactions. Systematics of low-spin levels for N=20 isotones (32Mg, 34Si, 36S, 38Ar, 40Ca). GRETINA at NSCL-MSU.
doi: 10.1103/PhysRevC.105.034318