References quoted in the ENSDF dataset: 55CA ADOPTED LEVELS, GAMMAS

36 references found.

Clicking on a keynumber will list datasets that reference the given article.


1976DA02

Phys.Rev. C13, 887 (1976)

C.N.Davids

Mass-Excess Predictions for Neutron-Rich Isotopes Near Iron

NUCLEAR STRUCTURE 51,52,53,54,55,56,57,58Ca, 53,55,57,59Sc, 53,54,55,56,57,58,59,60Ti, 55,57,59,61V, 57,58,59,60,61,62Cr, 59,61,63Mn, 61,62,63,64Fe, 65Co, 63Ga, 64,65,67Ge; calculated mass excess.

doi: 10.1103/PhysRevC.13.887


1990SU06

Prog.Theor.Phys.(Kyoto) 83, 180 (1990)

Y.Suzuki, K.Ikeda, H.Sato

New Type of Dipole Vibration in Nuclei

NUCLEAR STRUCTURE 47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62Ca; calculated pygmy dipole resonance, GDR relative energy, dipole strength ratio. 128I, 134Cs, 142Pr, 160Tb, 166Ho, 170Tm, 176Lu, 182Ta, 198Au, 207Pb; calculated pygmy resonance energy, electric dipole strength. Hydrodynamic model.


1995RI05

Nucl.Phys. A586, 445 (1995); Erratum Nucl.Phys. A596, 716 (1996)

W.A.Richter, M.G.Van der Merwe, B.Brown

Shell-Model Calculations for Neutron-Rich Nuclei in the 0f1p Shell

NUCLEAR STRUCTURE 51,52,53,54,55,56,57,58,59,60Ca, 52,53,54,55,56,57,58,59,60,61Sc, 54,55,56,57,58,59,60,61,62Ti, 59,60,61,62,63V, 58,60,61,62,63,64Cr, 62,63,64,65Mn, 63,64,65,66Fe; calculated binding energies, mass defects. 51,50,52Ca, 52,53Ti, 51,52Sc; calculated levels. Shell model, empirical effective interaction.

doi: 10.1016/0375-9474(94)00802-T


1997BE70

Phys.Lett. 415B, 111 (1997)

M.Bernas, C.Engelmann, P.Armbruster, S.Czajkowski, F.Ameil, C.Bockstiegel, Ph.Dessagne, C.Donzaud, H.Geissel, A.Heinz, Z.Janas, C.Kozhuharov, Ch.Miehe, G.Munzenberg, M.Pfutzner, W.Schwab, C.Stephan, K.Summerer, L.Tassan-Got, B.Voss

Discovery and Cross-Section Measurement of 58 New Fission Products in Projectile-Fission of 750 x A MeV 238U

NUCLEAR REACTIONS Be(238U, X)54Ca/55Ca/56Ca/56Sc/57Sc/58Sc/59Ti/60Ti/61Ti/62V/63V/64V/65Cr/66Cr/67Cr/67Mn/68Mn/69Mn/70Fe/71Fe/72Fe/73Co/74Co/75Co/77Ni/78Ni/80Cu/82Zn/83Zn/85Ga/86Ga/87Ge/88Ge/89Ge/90As/91As/92As/92Se/93Se/94Se/95Br/96Br/97Br/97Kr/98Kr/99Kr/100Kr/103Sr/104Sr/105Sr/106Y/107Y/108Zr/109Zr/110Zr/111Nb/112Nb/113Nb/114Mo/116Tc/117Tc/119Ru/122Rh/124Pd, E=750 MeV/nucleon; measured projectile fission fragment yields, production σ. Fragment separator, tof techniques.

doi: 10.1016/S0370-2693(97)01216-1


1998BR30

Phys.Rev. C58, 2099 (1998)

B.A.Brown, W.A.Richter

Shell-Model Plus Hartree-Fock Calculations for the Neutron-Rich Ca Isotopes

NUCLEAR STRUCTURE 47,48,49,50,51,52,53,54,55,56,57,58,59,60Ca; calculated binding energies, levels, J, π. 48Ca calculated electron scattering form factors. Shell model plus Hartree-Fock approach.

doi: 10.1103/PhysRevC.58.2099


2008MA01

Phys.Rev. C 77, 014313 (2008)

P.F.Mantica, R.Broda, H.L.Crawford, A.Damaske, B.Fornal, A.A.Hecht, C.Hoffman, M.Horoi, N.Hoteling, R.V.F.Janssens, J.Pereira, J.S.Pinter, J.B.Stoker, S.L.Tabor, T.Sumikama, W.B.Walters, X.Wang, S.Zhu

β decay of neutron-rich 53-56Ca

RADIOACTIVITY 53,54,55,56Ca(β-) [from 9Be(76Ge, X), E=140 MeV/nucleon; measured Eγ, Iγ, βγ-coin, half-lives. 54Ca; deduced Iβ, logft. 54Sc; levels, J, π, half-lives, B(M1), B(E2), comparison with calculations.

NUCLEAR REACTIONS 9Be(76Ge, X)49Cl/50Ar/51Ar/52K/53K/54K/53Ca/54Ca/55Ca/56Ca/55Sc/56Sc/57Sc/57Ti/58Ti/59Ti/60V, E=140 MeV/nucleon; measured reaction yields.

doi: 10.1103/PhysRevC.77.014313


2008MA17

Phys.Rev. C 77, 054309 (2008)

J.Margueron, H.Sagawa, K.Hagino

Effective pairing interactions with isospin density dependence

NUCLEAR STRUCTURE 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62Ca, 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90Ni, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170Sn, 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267Pb; calculated odd-even mass staggering, binding energies, two-neutron separation energies, pairing gaps. Comparison with experimental data. 110,150Sn; calculated particle densities, neutron Fermi momentum. Hartree-Fock-Bogoliubov model.

doi: 10.1103/PhysRevC.77.054309


2009CO19

Phys.Rev. C 80, 044311 (2009)

L.Coraggio, A.Covello, A.Gargano, N.Itaco

Spectroscopic study of neutron-rich calcium isotopes with a realistic shell-model interaction

NUCLEAR STRUCTURE 49,50,51,52,53,54,55Ca, 56Ca; calculated levels, J, π, and neutron-neutron two-body matrix elements using shell-model with a realistic effective interaction from the CD-Bonn nucleon-nucleon potential. 42,44,46,48,50,52,54,56Ca; calculated ground-state energies per valence neutron and effective single-particle energies. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.044311


2010TO07

Phys.Atomic Nuclei 73, 1684 (2010); Yad.Fiz. 73, 1731 (2010)

S.V.Tolokonnikov, E.E.Saperstein

Description of superheavy nuclei on the basis of a modified version of the DF3 energy functional

NUCLEAR STRUCTURE 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57Ca, 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb, 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282U, 298Fl; calculated proton and neutron single-particle spectrum, neutron separation energies, rms charge radii. DF-3, HFB-17 functionals.

doi: 10.1134/S1063778810100054


2011BA52

J.Phys.:Conf.Ser. 312, 092015 (2011)

S.Baroni, A.O.Macchiavelli, A.Schwenk

Partial-wave contributions to pairing in nuclei

NUCLEAR STRUCTURE 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57Ca, 101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138Sn, 185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213Pb; calculated binding energy, mass excess using phenomenological EDF (energy-density formalism). Shown influence of partial waves, compared with data.

doi: 10.1088/1742-6596/313/9/092015


2012CA13

Phys.Rev. C 85, 034324 (2012)

M.A.Caprio, F.Q.Luo, K.Cai, V.Hellemans, Ch.Constantinou

Generalized seniority for the shell model with realistic interactions

NUCLEAR STRUCTURE 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59Ca; calculated levels, J, π, orbital occupations, quadrupole moments, B(E2), magnetic moment. Comparison between seniority (ν=1-3) model space and full shell-model space.

doi: 10.1103/PhysRevC.85.034324


2012HA26

Phys.Rev.Lett. 109, 032502 (2012)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, R.Machleidt, T.Papenbrock

Evolution of Shell Structure in Neutron-Rich Calcium Isotopes

NUCLEAR STRUCTURE 42,48,50,52,53,54,55,56,61Ca, 50,54,56Ti; calculated ground state energies, J, π. Chiral effective field theory, comparison with available data.

doi: 10.1103/PhysRevLett.109.032502


2013BR08

J.Phys.:Conf.Ser. 445, 012010 (2013)

B.A.Brown

Pairing and shell gaps in nuclei

NUCLEAR STRUCTURE 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60Ca; calculated ground-state energy, 2+ energy, 1n separation energy, Q. Z=6-92; calculated energy differences, Q of neighbouring isotopes. Shell model. Compared with available data.

doi: 10.1088/1742-6596/445/1/012010


2013LI13

Nucl.Phys. A900, 1 (2013)

J.Liu, Z.Ren, T.Dong

Theoretical study on neutron skin thickness of Ca isotopes by parity-violating electron scattering

NUCLEAR STRUCTURE 44,48Ca, 208Pb; analyzed PVS (parity-violating electron scattering); calculated, deduced parity-violating asymmetry, symmetry energy, proton, neutron radius, neutron skin. 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,41,52,53,54,55,56,57,58Ca; calculated, deduced neutron, proton density distribution with nuclear radius and diffusivity fitted to FSUGold parameter set.

doi: 10.1016/j.nuclphysa.2013.01.034


2014HO12

Phys.Rev. C 90, 024312 (2014)

J.D.Holt, J.Menendez, J.Simonis, A.Schwenk

Three-nucleon forces and spectroscopy of neutron-rich calcium isotopes

NUCLEAR STRUCTURE 40,41,42,43,44,45,46,47,48,49,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70Ca; calculated ground-state energies in pf and pfg9/2 shells, convergence of 42Ca and 48Ca ground-state energies as a function of increasing intermediate-state excitations; calculated levels, J, π, B(E2), B(M1) for 43,44,45,46,47,48,49,51,52,53,54,55,56,57Ca, energy convergence. Chiral two- and three-nucleon (NN and 3N) interactions, and many-body perturbation theory (MBPT). Comparison with coupled-cluster calculations, and with available experimental data for A=43-57 Ca isotopes.

doi: 10.1103/PhysRevC.90.024312


2016HA34

Phys.Scr. 91, 063006 (2016)

G.Hagen, M.Hjorth-Jensen, G.R.Jansen, T.Papenbrock

Emergent properties of nuclei from ab initio coupled-cluster calculations

COMPILATION 4,8He, 14C, 16O, 40,48Ca, 56Ni; compiled gs energy, mass excess, difference between theoretical charge radii and data; calculated gs energy, mass excess, charge radii using ab initio approach with chiral NNLOsat interaction.

NUCLEAR STRUCTURE 16,22,24,28O; calculated gs energy, mass excess using two NNLOsat interactions. Compared to available data. 17,23,25O, 53,55,61Ca; calculated low-lying unbound levels, J, π using harmonic oscillator HF basis and Gamow-Hartree-Fock basis. 20Ne, 24Mg; calculated yrast states using CCEI (Coupled Cluster Effective Interaction) and USDB; compared to data.

doi: 10.1088/0031-8949/91/6/063006


2016KU21

J.Phys.(London) G43, 105104 (2016)

V.Kumar, P.C.Srivastava, H.Li

Nuclear β--decay half-lives for fp and fpg shell nuclei

RADIOACTIVITY 52,53,54,55,56,57,58Ca, 54,55,56,57,58,59,60,61Sc, 56,57,58,59,60,61,62Ti, 56,57,58,59,60,61,62,63V, 59,60,61,62,63,64Cr, 60,61,62,63,64,65Mn, 65,66Fe, 64,65,66,67Co, 67,68,69,70,71,72,73,74,75,76,77,78Ni, 68,69,70,71,72,73,74,75,76,77,78,79Cu, 73,74,75,76,77,78,79,80Zn(β-); calculated T1/2. Comparison with experimental data.

doi: 10.1088/0954-3899/43/10/105104


2018MI08

Phys.Rev.Lett. 121, 022506 (2018)

S.Michimasa, M.Kobayashi, Y.Kiyokawa, S.Ota, D.S.Ahn, H.Baba, G.P.A.Berg, M.Dozono, N.Fukuda, T.Furuno, E.Ideguchi, N.Inabe, T.Kawabata, S.Kawase, K.Kisamori, K.Kobayashi, T.Kubo, Y.Kubota, C.S.Lee, M.Matsushita, H.Miya, A.Mizukami, H.Nagakura, D.Nishimura, H.Oikawa, H.Sakai, Y.Shimizu, A.Stolz, H.Suzuki, M.Takaki, H.Takeda, S.Takeuchi, H.Tokieda, T.Uesaka, K.Yako, Y.Yamaguchi, Y.Yanagisawa, R.Yokoyama, K.Yoshida, S.Shimoura

Magic Nature of Neutrons in Ca54 : First Mass Measurements of 55-57Ca

ATOMIC MASSES 55,56,57Ca, 48Ar, 44,46Cl, 40,42P, 40Si; measured charge, TOF, magnetic rigidity, and flight path length between the timing detectors; deduced m/q spectrum of reference masses, mass excesses. Comparison with AME2016 evaluation.

doi: 10.1103/PhysRevLett.121.022506


2019BA42

Phys.Rev. C 100, 044308 (2019)

B.Bally, A.Sanchez-Fernandez, T.R.Rodriguez

Variational approximations to exact solutions in shell-model valence spaces: Calcium isotopes in the pf shell

NUCLEAR STRUCTURE 48Ca; calculated total energy surfaces (TES) as a function of the quadrupole degrees of freedom in the (β2, γ) plane, intrinsic pairing energy, particle-number projected, and particle-number and angular-momentum projected total energy surfaces as a function of the axial quadrupole (β2, γ=0 or 180 degrees) and nn-pairing degrees of freedom, levels, J, π, wave functions, B(E2), spectroscopic electric quadrupole moments, occupation numbers. 42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60Ca; calculated ground-state energies, energy difference between the approximate and exact ground-state energies computed with different variational approaches, excitation energies as a function of the angular momentum. Calculations used several projected generator coordinate methods (PGCM) in reproducing the exact eigenstates of the shell-model Hamiltonian KB3G in the pf-shell valence space.

doi: 10.1103/PhysRevC.100.044308


2019MO01

At.Data Nucl.Data Tables 125, 1 (2019)

P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers

Nuclear properties for astrophysical and radioactive-ion-beam applications (II)

NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.

doi: 10.1016/j.adt.2018.03.003


2019NE02

Phys.Rev.Lett. 122, 062502 (2019)

L.Neufcourt, Y.Cao, W.Nazarewicz, E.Olsen, F.Viens

Neutron Drip Line in the Ca Region from Bayesian Model Averaging

NUCLEAR STRUCTURE 50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82Ca, 52Cl, 53Ar, 49S; calculated one- and two-neutron separation energies, posterior probability of existence of neutron-rich nuclei in the Ca region.

doi: 10.1103/PhysRevLett.122.062502


2019SA02

Phys.Lett. B 788, 1 (2019)

G.Saxena, M.Kumawat, M.Kaushik, S.K.Jain, M.Aggarwal

Bubble structure in magic nuclei

NUCLEAR STRUCTURE 12,13,14,15,16,17,18,19,20,21,22,23,24O, 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70Ca, 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98Ni, 80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150Zr, 78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126Sn, 178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262Pb, 251Fr, 299Mc, 302Og, 22Si, 34Si, 46Ar, 56S, 58Ar, 184Ce, 347119, 292120, 341Nh; calculated charge and matter densities, single particle levels and depletion fraction (DF) across the periodic chart; deduced that the central depletion is correlated to shell structure and occurs due to unoccupancy in s-orbit (2s, 3s, 4s) and inversion of (2s, 1d) and (3s, 1h) states in nuclei upto Z less or equal to 82. Bubble effect in superheavy region is a signature of the interplay between the Coulomb and nn-interaction where the depletion fraction is found to increase with Z (Coulomb repulsion) and decrease with isospin.

doi: 10.1016/j.physletb.2018.08.076


2019WA31

Chin.Phys.C 43, 124106 (2019)

X.-B.Wang, Y.-H.Meng, Y.Tu, G.-X.Dong

The structure of neutron-rich calcium isotopes studied by the shell model with realistic effective interactions

NUCLEAR STRUCTURE 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58Ca; calculated binding energies, two-neutron separation energies, energy levels, J, π, yrast states, spectroscopic factors. CD-Bonn and Kuo-Brown (KB) interactions.

doi: 10.1088/1674-1137/43/12/124106


2020BH06

J.Phys.(London) G47, 065105 (2020)

B.Bhoy, P.C.Srivastava, K.Kaneko

Shell model results for 47-58Ca isotopes in the fp, fpg9/2 and fpg9/2d5/2 model spaces

NUCLEAR STRUCTURE 47,48,49,50,51,52,53,54,55,56,57,58Ca; calculated energy levels, J, π, occupancy, B(E2), nuclear magnetic moments, spectroscopic factors, wave functions. Comparison with available data.

doi: 10.1088/1361-6471/ab80d4


2020DA15

Phys.Rev. C 102, 064301 (2020)

A.C.Dassie, R.M.Id Betan

Estimate of the location of the neutron drip line for calcium isotopes from an exact Hamiltonian with continuum pair correlations

NUCLEAR STRUCTURE 41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73Ca; calculated binding energies, S(2n), Fermi level and pairing gaps of even Ca isotopes, energies of single-particle bound levels for odd Ca isotopes from A=41-73, occupation probabilities for 50,54,62,66Ca, for even Ca isotopes, binding energies of 51,53,55,57,59,61Ca; deduced one particle drip line at 57Ca, and the two neutron drip line at 60Ca or 66Ca, depending on the model used. Modified Richardson equations to solve the many-body system, with two isospin independent models, and an isospin dependent model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.102.064301


2020LI35

Phys.Rev. C 102, 034302 (2020)

J.G.Li, B.S.Hu, Q.Wu, Y.Gao, S.J.Dai, F.R.Xu

Neutron-rich calcium isotopes within realistic Gamow shell model calculations with continuum coupling

NUCLEAR STRUCTURE 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72Ca; calculated binding energies, S(n), S(2n), neutron effective single-particle energies (ESPE), energies of the first 2+ states in even-A nuclei. 51,52,53,54,55,56,57,58Ca; calculated levels, J, π. 51,53,55,57Ca; calculated energies and widths of the first 5/2+ and 9/2+ resonance states. Realistic Gamow shell model based on high-precision CD-Bonn potential. Comparison with experimental data. 57Ca; predicted as the heaviest odd-A bound Ca isotope. 70Ca; predicted as the dripline nucleus. Calculations support shell closures at 52Ca, 54Ca, and possibly at 70Ca, and a weakening of shell closure at 60Ca.

doi: 10.1103/PhysRevC.102.034302


2020SO01

Phys.Rev. C 101, 014318 (2020)

V.Soma, P.Navratil, F.Raimondi, C.Barbieri, T.Duguet

Novel chiral Hamiltonian and observables in light and medium-mass nuclei

NUCLEAR STRUCTURE 3H, 3,4,6,8He, 6,7,9Li, 7,8,9,10Be, 10,11B, 12,13,14C, 14N, 14,16O, 36Ca, 68Ni; calculated ground-state energies. 6,7,9Li, 8,9Be, 10,11B, 12,13C; calculated levels, J, π. 12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28O, 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,70Ca, 48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78Ni; calculated total binding energies, S(2n), rms charge radii. 16O, 40Ca, 58Ni; calculated charge density distribution. 47,49,53,55Ca, 53K, 55Sc; calculated levels, J, π populated in one-neutron removal and addition from and to 48Ca and 54Ca. 37,39,41,43,45,47,49,51,53,55K; calculated energies of the first excited states. 16O, 36Ca, 56Ni; calculated binding energies. 18O, 52Ca, 64Ni; calculated rms charge radii. 39K, 49,53Ca; calculated one-nucleon separation energies. 16,22,24O, 36,40,48,52,54,60Ca, 48,56,68Ni; calculated binding energy per particle for doubly closed-shell nuclei. State-of-the-art no-core shell model and self-consistent Green's function approaches with NN+3N(lnl) interaction, and with comparisons made with NNLOsat and NN+3N(400) interactions, and with experimental data.

doi: 10.1103/PhysRevC.101.014318


2020TA01

Phys.Rev. C 101, 014620 (2020)

S.Tagami, M.Tanaka, M.Takechi, M.Fukuda, M.Yahiro

Chiral g-matrix folding-model approach to reaction cross sections for scattering of Ca isotopes on a C target

NUCLEAR STRUCTURE 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,62,64Ca; calculated β and γ deformation parameters, even and odd driplines, binding energies, charge, proton, neutron and matter radii, neutron skin for the ground states using Gogny-D1S Hartree-Fock-Bogoliubov (GHFB) theory with and without the angular momentum projection (AMP). Comparison with experimental data.

NUCLEAR REACTIONS 12C(40Ca, X), (41Ca, X), (42Ca, X), (43Ca, X), (44Ca, X), (45Ca, X), (46Ca, X), (47Ca, X), (48Ca, X), (49Ca, X), (50Ca, X), (51Ca, X), (52Ca, X), (53Ca, X), (54Ca, X), (55Ca, X), (56Ca, X), (57Ca, X), (58Ca, X), (59Ca, X), (60Ca, X), (62Ca, X), (64Ca, X), E=280, 250.7 MeV; calculated reaction σ(E) using chiral g-matrix double-folding model (DFM), and compared with GHFB+AMP density, and available experimental data. 9Be, 12C, 27Al(12C, X), E=30-400 MeV; calculated reaction σ(E) using chiral g-matrix double-folding model (DFM). Comparison with results from t-matrix DFM densities, and experimental data.

doi: 10.1103/PhysRevC.101.014620


2020ZH31

Phys.Rev. C 102, 034322 (2020)

Q.Zhao, P.Zhao, J.Meng

Impact of tensor forces on spin-orbit splittings in neutron-proton drops

NUCLEAR STRUCTURE 40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69Ca; calculated spin-orbit splittings of single-particle states 1p and 1d orbitals in neutron-proton drops. N=8-50; calculated spin-orbit splittings of single-neutron states 1p, 1d, 1f and 2p as a function of the neutron number for neutron drops and neutron-proton drops with Z=1. Hartree-Fock (RHF) theory with the p-N coupling strength optimized to the relativistic Brueckner-Hartree-Fock (RBHF) results for neutron drops. Systematic study of the impact of tensor-force in neutron-proton drops.

doi: 10.1103/PhysRevC.102.034322


2021KO07

Chin.Phys.C 45, 030001 (2021)

F.G.Kondev, M.Wang, W.J.Huang, S.Naimi, G.Audi

The NUBASE2020 evaluation of nuclear physics properties

COMPILATION A=1-295; compiled, evaluated nuclear structure and decay data.

doi: 10.1088/1674-1137/abddae


2021LI33

Phys.Rev. C 104, 014315 (2021)

Y.Liu, C.Su, J.Liu, P.Danielewicz, C.Xu, Z.Ren

Improved naive Bayesian probability classifier in predictions of nuclear mass

ATOMIC MASSES Z=8-118, N=8-170; analyzed masses of 3245 nuclei using an improved naive Bayesian probability (iNBP) method, with classifications tables generated from determination of residuals between theoretical masses from FRDM, HFB and RMF models and the experimental values in AME2016; predicted by iNBP method nuclear masses of the nuclei added in AME2016, as compared to those in AME2003. 48,49,50,51,52,53,54,55,56,57,58,59,60,62,64,66,68,70Ca; calculated binding energies using FRDM, HBF, and RMF methods with modifications by iNBP method, and compared with available experimental values from AME2016.

doi: 10.1103/PhysRevC.104.014315


2021MA73

Phys.Rev. C 104, L051302 (2021)

A.Magilligan, B.A.Brown, S.R.Stroberg

Data-driven configuration-interaction Hamiltonian extrapolation to 60Ca

NUCLEAR STRUCTURE 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60Ca; calculated levels, J, π, S(2n); comparison of the two-body matrix elements (TBME) between the UFP-CA and the initial IMSRG interaction; deduced likely doubly magic nature of 60Ca at a level similar to that of 68Ni. State-of-the-art in-medium similarity renormalization group (IMSRG) interaction, with universal fp shell interaction for calcium isotopes (UFP-CA). Comparison with experimental data.

doi: 10.1103/PhysRevC.104.L051302


2021MI17

Phys.Rev. C 104, 044321 (2021)

F.Minato, T.Marketin, N.Paar

β-delayed neutron-emission and fission calculations within relativistic quasiparticle random-phase approximation and a statistical model

RADIOACTIVITY Z=8-110, N=11-209, A=19-318(β-), (β-n); calculated T1/2, β--delayed neutron emission (BDNE) branching ratios (P0n, P1n, P2n, P3n, P4n, P5n, P6n, P7n, P8n, P9n, P10n), mean number of delayed neutrons per beta-decay, and average delayed neutron kinetic energy, total beta-delayed fission and α emission branching ratios for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Z=93-110, N=184-200, A=224-318; calculated T1/2, β--delayed fission (BDF) branching ratios (P0f, P1f, P2f, P3f, P4f, P5f, P6f, P7f, P8f, P9f, P10f), total beta-delayed fission and beta-delayed neutron emission branching ratios for four fission barrier height models 140,162Sn; calculated β strength functions, β--delayed neutron branching ratios from P0n to P10n by pn-RQRPA+HFM and pn-RQRPA methods. 137,138,139,140,156,157,158,159,160,161,162Sb; calculated isotope production ratios as a function of excitation energy. 123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Pd, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159Ag, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250Os, 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255Ir; calculated β-delayed one neutron branching ratio P1n by pn-RQRPA+HFM, pn-RQRPA, and FRDM+QRPA+HFM methods, and compared with available experimental data. 89Br, 138I; calculated β-delayed neutron spectrum by pn-RQRPA+HFM method, and compared with experimental spectra. 260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330Fm; calculated fission barrier heights for HFB-14, FRDM, ETFSI and SBM models, mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. 63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99Ni, 120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,161,162,163,164,165,166,167,168,169,170Sn; calculated mean numbers and mean energies of emitted β-delayed neutrons by pn-RQRPA+HFM and pn-RQRPA methods. Z=70-110, N=120-190; calculated β--delayed α branching ratios Pα (%) for FRDM fission barrier data. Fully self-consistent covariant density-functional theory (CDFT), with the ground states of all the nuclei calculated with the relativistic Hartree-Bogoliubov (RHB) model with the D3C* interaction, and relativistic proton-neutron quasiparticle random-phase approximation (pn-RQRPA) for β strength functions, with particle evaporations and fission from highly excited nuclear states estimated by Hauser-Feshbach statistical model (pn-RQRPA+HFM) for four fission barrier height models (ETFSI, FRDM, SBM, HFB-14). Detailed tables of numerical data for β-delayed neutron emission (BDNE), β-delayed fission (BDF) and β-delayed α-particle emission branching ratios are given in the Supplemental Material of the paper.

doi: 10.1103/PhysRevC.104.044321


2021WA16

Chin.Phys.C 45, 030003 (2021)

M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi

The AME 2020 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses, mass excess, β-, ββ and ββββ-decay, binding, neutron and proton separation energies, decay and reaction Q-value data.

doi: 10.1088/1674-1137/abddaf


2022DO01

Phys.Rev. C 105, 014308 (2022)

X.-X.Dong, R.An, J.-X.Lu, L.-S.Geng

Novel Bayesian neural network based approach for nuclear charge radii

NUCLEAR STRUCTURE 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55Ca, 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55K; calculated charge radii by the Nerlo-Pomorska and Pomorski (NP) formula, D2 and D4 models, and compared with the experimental data; deduced strong odd-even staggerings. Novel approach combining a three-parameter formula and Bayesian neural network for charge radii.

doi: 10.1103/PhysRevC.105.014308


2022KO06

Phys.Lett. B 827, 136953 (2022)

T.Koiwai, K.Wimmer, P.Doornenbal, A.Obertelli, C.Barbieri, T.Duguet, J.D.Holt, T.Miyagi, P.Navratil, K.Ogata, N.Shimizu, V.Soma, Y.Utsuno, K.Yoshida, N.L.Achouri, H.Baba, F.Browne, D.Calvet, F.Chateau, S.Chen, N.Chiga, A.Corsi, M.L.Cortes, A.Delbart, J.-M.Gheller, A.Giganon, A.Gillibert, C.Hilaire, T.Isobe, T.Kobayashi, Y.Kubota, V.Lapoux, H.N.Liu, T.Motobayashi, I.Murray, H.Otsu, V.Panin, N.Paul, W.Rodriguez, H.Sakurai, M.Sasano, D.Steppenbeck, L.Stuhl, Y.L.Sun, Y.Togano, T.Uesaka, K.Yoneda, O.Aktas, T.Aumann, L.X.Chung, F.Flavigny, S.Franchoo, I.Gasparic, R.-B.Gerst, J.Gibelin, K.I.Hahn, D.Kim, Y.Kondo, P.Koseoglou, J.Lee, C.Lehr, B.D.Linh, T.Lokotko, M.MacCormick, K.Moschner, T.Nakamura, S.Y.Park, D.Rossi, E.Sahin, P.-A.Soderstrom, D.Sohler, S.Takeuchi, H.Toernqvist, V.Vaquero, V.Wagner, S.Wang, V.Werner, X.Xu, H.Yamada, D.Yan, Z.Yang, M.Yasuda, L.Zanetti

A first glimpse at the shell structure beyond 54Ca: Spectroscopy of 55K, 55Ca, and 57Ca

NUCLEAR REACTIONS 1H(56Ca, 2p)55K, (56Ca, np)55Ca, E=250 MeV/nucleon; 1H(58Sc, 2p)57Ca, E not given, [secondary 56Ca and 58Sc beams from 9Be(70Zn, X), E=345 MeV/nucleon, followed by selection of fragments of interest using the BigRIPS separator through the TOF-ΔE-Bρ method at RIBF-RIKEN facility]; measured reaction products using the by SAMURAI magnetic spectrometer, protons, Eγ, Iγ, (proton)γ-coin using thick liquid hydrogen target system MINOS and DALI22 array of 226 NaI(Tl) scintillator detectors. 55K, 55,57Ca; deduced levels, J, π, level half-lives, exclusive population σ, spectroscopic factors, short-lived state in 57Ca. Comparison with state-of-the-art theoretical calculations using different approaches such as large-scale shell model (LSSM), valence-space in-medium similarity renormalization group (VS-IMSRG), full-space self-consistent Green's function (SCGF) with NNLOsat and NN+3N(lnl) interactions.

doi: 10.1016/j.physletb.2022.136953