References quoted in the ENSDF dataset: 238U ADOPTED LEVELS, GAMMAS
288 references found.
Clicking on a keynumber will list datasets that reference the given article.
Phys.Rev. 76, 1561 (1949)
C.A.Kienberger
The U234 Content of Natural Uranium and the Specific Alpha-Activities of the Isotopes
Phys.Rev. 86, 21 (1952)
E.Segre
Spontaneous Fission
RADIOACTIVITY 230,232Th, 231Pa, 232,233,234,235,238U, 237,239Np, 238,239Pu(SF); analyzed available data; deduced recommended T1/2.
Phys.Rev. 98, 46 (1955)
A.F.Kovarik, N.I.Adams
Redetermination of the Disintegration Constant of U238
J.S.African Chem.Inst. 10, 62 (1957)
F.L.Clark, H.J.Spencer-Palmer, R.N.Woodward
The Determination of the Half-Lives and α-Particle Energies of Some Radioactive Isotopes. Part I. The Determination of the Half-Lives of Uranium 235 and Uranium 238
J.Nuclear Energy 4, 38 (1957)
R.B.Leachman, H.W.Schmitt
The Cross-Section for U238 Fission by Fission Neutrons
Radiokhimiya 1, 223 (1959)
E.K.Gerling, Y.A.Shukolyukov, B.A.Makarochkin
Determination of the Spontaneous Fission Half-Life of 238U by Xenon Content in Uranium Minerals
Zhur.Eksptl.i Teoret.Fiz. 37, 406 (1959); Soviet Phys.JETP 10, 290 (1960)
B.D.Kuzminov, L.S.Kutsaeva, V.G.Nesterov, L.I.Prokhorova, G.N.Smirenkin
Some Features of the Spontaneous Fission of U238
Proc.Symp.Metrology Radionuclides, Vienna, Austria (1959), Intern.At.Energy Agency, Vienna, p.155 (1960)
J.Steyn, F.W.E.Strelow
The Determination of the Half-Life of U238 by Absolute Counting of α Particles in a 4 π-Liquid Scintillation Counter
Kgl.Danske Videnskab.Selskab, Mat.-fys.Medd. 32, No.12 (1960)
R.E.Bell, S.Bjornholm, J.C.Severiens
Half Lives of First Excited States of Even Nuclei of Fm, Ra, Th, U, and Pu
NUCLEAR STRUCTURE 233U, 232Th, 232U, 234Th, 236Pu, 236U, 234U, 220Rn, 222Th, 218Rn, 222Ra, 224Ra, 222Rn, 230Pa, 230Th, 230U, 228Th, 228Ac, 226Ra, 228Ra, 226Th, 242Cm, 244Cm, 240Pu, 238U, 238Pu; measured not abstracted; deduced nuclear properties.
Thesis, Univ.Arkansas (1963); Nucl.Sci.Abstr. 18, 158, Abstr.1079 (1964)
M.P.Menon
14.7-MeV Neutron-Induced and Spontaneous Fission Yields of Uranium-238 In the Rare Earth Region
NUCLEAR STRUCTURE, Fission 238U; measured not abstracted; deduced nuclear properties.
Phys.Rev. 133, B63 (1964)
R.L.Fleischer, P.B.Price
Decay Constant for Spontaneous Fission of U238
RADIOACTIVITY, Fission 238U; measured T1/2 (SF).
At.Energy Rev. 3, No.2, 117 (1965)
V.G.Solovev
Non-Rotational Collective States of Deformed Even-Even Nuclei
NUCLEAR STRUCTURE 150Nd, 152,154Sm, 154,156,158,160Gd, 158,160,162,164Dy, 164,166,168,170Er, 168,172,174,176Yb, 174,176,178Hf, 180,182,184,186W, 184,186,188Os, 228,230,232,234Th, 232,234,236,238U, 236,238,240,242Pu, 242,244,246Cm, 250,252Cf, 252,254Fm; calculated levels.
Phys.Rev. 147, 884 (1969)
M.N.Rao, P.K.Kuroda
Decay Constant and Mass-Yield Curve for the Spontaneous Fission of Uranium-238
RADIOACTIVITY, Fission 238U; measured 132Te/238U equilibrium ratio in nonirradiated U; deduced decay constant, T1/2(SF), mass-yield curve.
Radiochim.Acta 7, 95 (1967)
T.Ishimori, K.Ueno, K.Kimura, E.Akatsu, Y.Kobayashi, J.Akatsu, R.Ono, M.Hoshi
The Spontaneous Fission of Uranium-238
RADIOACTIVITY, Fission 238U(SF); measured T1/2. 90,91,93Y; measured T1/2. 141,143Ce; measured T1/2.
Helv.Phys.Acta 40, 1063 (1967)
A.Spadavecchia, B.Hahn
Die Rotationskammer und einige Anwendungen
RADIOACTIVITY, Fission 232Th(SF), 238U(SF); measured T1/2.
Nucl.Phys. A117, 552 (1968)
P.Holmberg, P.O.Lipas
A New Formula for Rotational Energies
NUCLEAR STRUCTURE 158Dy, 166Hf, 172,180W, 152Sm, 154,156Gd, 170Hf, 184Pt, 238U, 122Xe, 126Ba; calculated ground-state rotational bands. Hydrodynamic model.
doi: 10.1016/0375-9474(68)90830-0
Phys.Rev. 174, 1482 (1968)
J.H.Roberts, R.Gold, R.J.Armani
Spontaneous-Fission Decay Constant of 238U
NUCLEAR STRUCTURE 238U; measured not abstracted; deduced nuclear properties.
Phys.Letters 30B, 458 (1969)
J.Blocki, W.Kurcewicz
Octupole Vibrations of Even Nuclei in the Transuranic Region
NUCLEAR STRUCTURE 228,230Th, 232,234,236,238U, 238,240Pu, 246Cm, 252Cf; calculated first excited odd-parity vibrational levels.
doi: 10.1016/0370-2693(69)90169-5
Helv.Phys.Acta 43, 593 (1970)
D.Galliker, E.Hugentobler, B.Hahn
Spontane Kernspaltung von 238U and 241Am
RADIOACTIVITY, Fission 238U, 241Am(SF); measured T1/2(SF).
Nucl.Phys. A149, 217 (1970)
K.Neergard, P.Vogel
On the Microscopic Description of Nuclear Vibrations When Phonons Occur at Relatively Low Energy (II). Octupole States of the Even Deformed Nuclei with A > 222
NUCLEAR STRUCTURE 222,224,226,228Ra, 224,226,228,230,232,234Th, 230,232,234,236,238U, 236,238,240,242,244Pu, 242,244,246,248Cm, 250,252Cf, 252,254Fm; calculated levels, B(E3).
doi: 10.1016/0375-9474(70)90388-X
Yad.Fiz. 14, 685 (1971); Sov.J.Nucl.Phys. 14, 385 (1972)
A.G.Belov, Y.P.Gangrskii, B.Dalkhsuren, A.M.Kucher
Production of the Spontaneously Fissioning U236 Isomer in Thermal Neutron Radiative Capture
NUCLEAR REACTIONS, Fission 235U(n, γF), E=thermal; measured σ, (fragment)(ce)-delay. 236mU deduced T1/2.
J.Nucl.Energy 25, 331 (1971)
H.Conde, M.Holmberg
Prompt ν-Bar in Spontaneous and Neutron Induced Fission of 236U and its Half-Life for Spontaneous Fission
RADIOACTIVITY, Fission 236U (SF), 238U (SF); measured T1/2 ratio.
NUCLEAR REACTIONS 236U(n, F), E=0.8-6.7 MeV; measured energy dependence of prompt ν-bar.
doi: 10.1016/0022-3107(71)90065-7
Phys.Rev. C4, 1889 (1971)
A.H.Jaffey, K.F.Flynn, L.E.Glendenin, W.C.Bentley, A.M.Essling
Precision Measurement of Half-Lives and Specific Activities of 235U and 238U
RADIOACTIVITY 235,238U; measured T1/2.
Geochim.Cosmochim.Acta 35, 637 (1971)
J.D.Kleeman, J.F.Lovering
A Determination of the Decay Constant for Spontaneous Fission of Natural Uranium Using Fission Track Accumulation
RADIOACTIVITY, Fission 238U(SF); measured T1/2.
Izv.Akad.Nauk SSSR, Ser.Fiz. 35, 1550 (1971); Bull.Acad.Sci.USSR, Phys.Ser. 35, 1413 (1972)
A.L.Komov, L.A.Malov, V.G.Solovev
One-Phonon States in Even-Even Nuclei and Nonrotational States in Some Odd Nuclei in the Actinide Region
NUCLEAR STRUCTURE 234,236,238,240U, 236,238,240,242,244Pu, 240,242,244,246,248Cm, 246,248,250Cf, 248,250Fm; calculated 1-phonon states, B(E3). 239U, 235,239Np, 237,243Pu, 243,245Am, 243Cm, 247Bk; calculated non-rotational states.
Nucl.Instrum.Methods 91, 577 (1971)
M.P.T.Leme, C.Renner, M.Cattani
Determination of the Decay Constant for Spontaneous Fission of 238U
RADIOACTIVITY, Fission 238U(SF); measured T1/2.
J.Inorg.Nucl.Chem. 33, 1509 (1971)
D.D.Sabu
On Mass-Yield of Xenon and Krypton Isotopes in the Spontaneous Fission Of Uranium
RADIOACTIVITY, Fission 238U(SF); measured Kr, Xe fission yields; reevaluated T1/2(SF).
doi: 10.1016/0022-1902(71)80448-7
Acta Phys.Austr. 33, 375 (1971)
W.M.Thury
Die Bestimmung der Spontanspaltrate von U-238 mit Hilfe der Messung von Korrelationsfunktionen dritter Ordnung
RADIOACTIVITY 238U; measured T1/2.
Z.Phys. 253, 289 (1972)
W.R.McMurray, I.J.van Heerden
The Level Structures of the Nuclei 232Th and 238U
NUCLEAR REACTIONS 232Th, 238U(n, n'γ), E < 1.9 MeV; measured σ(E;Eγ), Eγ, Iγ. 232Th, 238U deduced levels, γ-branching. Ge(Li) detectors.
Ganseki Kobutsu Kosho Gakkaishi 67, 139 (1972)
S.Nishimura
On the Value of the Decay Constant for Spontaneous Fission of 238U
RADIOACTIVITY, Fission 238U(SF); measured T1/2.
Radiat.Eff. 17, 133 (1973)
H.A.Khan, S.A.Durrani
Measurement of Spontaneous-Fission Decay Constant of 238U with a Mica Solid State Track Detector
RADIOACTIVITY, Fission 238U(SF); measured T1/2.
Acta Phys.Pol. B5, 725 (1974)
W.Dudek
Coupling between Quadrupole and Hexadecapole Degrees of Freedom
NUCLEAR STRUCTURE 238U, 238,240Pu; calculated energies of quadrupole, hexadecapole vibrational states.
At.Energ. 36, 403 (1974); Sov.At.Energy 36, 514 (1974)
K.N.Ivanov, K.A.Petrzhak
Probability of Fission by 1.33-MeV γ-Rays and Spontaneous Fission Half-Life for 238U
RADIOACTIVITY, Fission 238U(SF); measured T1/2.
NUCLEAR REACTIONS 238U(γ, F), E(max)=1.332 MeV; measured fission rate. 238U(SF) deduced T1/2.
Nucl.Phys. A224, 429 (1974)
R.D.Meeker, G.M.Kalvius, B.D.Dunlap, S.L.Ruby, D.Cohen
Hyperfine Interactions and Nuclear Moments in Even Uranium Isotopes from Mossbauer Spectroscopy
NUCLEAR REACTIONS 234,236,238U(γ, γ'); measured hyperfine splitting, Mossbauer effect. 234,236,238U levels deduced μ, quadrupole moment ratios.
doi: 10.1016/0375-9474(74)90547-8
Nucl.Instrum.Methods 128, 355 (1975)
V.Emma, S.Lo Nigro
Decay Constant for Spontaneous Fission of 238U and 232Th
RADIOACTIVITY, Fission 238U(SF), 232Th(SF); measured decay constant.
JINR-E4-9070 (1975)
S.P.Ivanova, A.L.Komov, G.Kyrchev, V.G.Soloviev, C.Stoyanov
On the Anharmonicity of Vibrational States with K = 2+, 0-, 1- and 2- in Doubly Even Deformed Nuclei 228 ≤ A ≤ 240
NUCLEAR STRUCTURE Xe, Ba, Ce; calculated β.
CEA-N-1798, p.121 (1975)
A.Le Brun, R.Perrier
Calcul d'Etats Non-Rotationnels dans les Actinides par un Modele R.P.A. Schematique
NUCLEAR STRUCTURE 228,230Th, 232,234,236,238,240,242,244U, 236,238,240,242,244Pu; calculated non-rotational levels.
Geochim.Cosmochim.Acta 39, 1279 (1975)
G.A.Wagner, G.M.Reimer, B.S.Carpenter, H.Faul, R.Van der Linden, R.Gubels
The Spontaneous Fission Rate of U-238 and Fission Track Dating
RADIOACTIVITY, Fission 238U(SF); measured T1/2, spontaneous fission rate.
Phys.Rev. C13, 1702 (1976)
N.Azziz, J.C.Palathingal, R.Mendez-Placido
Treatment of Centrifugal Elastic Stresses in Nuclear Rotation
NUCLEAR STRUCTURE 154Gd, 160,162,164Dy, 176,178,180Hf, 232,234,236,238U; analyzed rotational levels using elastic stress analysis.
Phys.Rev. C13, 229 (1976)
J.Randrup, S.E.Larsson, P.Moller, S.G.Nilsson, K.Pomorski, A.Sobiczewski
Spontaneous-Fission Half-Lives for Even Nuclei with Z ≥ 92
RADIOACTIVITY, Fission 232,234,236,238U, 236,238,240,242,244Pu, 240,242,244,246,248,250Cm, 246,248,250,252,254Cf, 244,246,248,250,252,254,256,258,260,262,264Fm, 252,254,256,258No; calculated (SF)T1/2. 252,254,256,258No, 256,258,260,262Rf, 260,262,264,266Sg, 260,262,264,266,268,270Hs; calculated Qα, α-decay T1/2.
Nucl.Phys. A258, 109 (1976)
A.A.Raduta, R.M.Dreizler
On the Description of the Ground-State Bands by Means of a Boson Hamiltonian
NUCLEAR STRUCTURE 102Pd, 126Ba, 148,152Sm, 154,156Dy, 166,168,170,172,174Hf, 182,184,186,190Pt, 238U; calculated levels.
doi: 10.1016/0375-9474(76)90532-7
Earth Planet.Sci.Lett. 30, 50 (1976)
K.Thiel, W.Herr
The 238U Spontaneous Fission Decay Constant Re-Determined by Fission Tracks
RADIOACTIVITY, Fission 238U(SF); measured fission tracks in glass; deduced decay constant.
Phys.Lett. 60B, 431 (1976)
P.Vogel
Negative Parity Yrast States in Deformed Nuclei
NUCLEAR STRUCTURE 238U, 162Er; calculated levels.
doi: 10.1016/0370-2693(76)90699-7
Phys.Rev. C16, 1179 (1977)
C.W.Ma, J.O.Rasmussen
Microscopic Calculations of High-Spin Rotational States
NUCLEAR STRUCTURE 162Er, 168Yb, 174Hf, 238U; calculated high-spin rotational states. Diagonalization cranking model using BCS, fully particle-number-projection wave functions.
Rev.Roum.Phys. 22, 613 (1977)
A.A.Raduta, C.Sabac
Upon a Simplified Version of the Coherent-States-Model for the Yrast Bands of Even-Even Nuclei
NUCLEAR STRUCTURE 154Gd, 156Dy, 166Yb, 158Er, 166,168,170,172,174Hf, 182,184Os, 184,186Pt, 238U; calculated levels in yrast band.
Phys.Scr. 18, 167 (1978)
M.Badea, A.A.Raduta, H.Stock
Upon an Extension of the Coherent State Model to the Description of the Negative Parity Bands
NUCLEAR STRUCTURE 150Sm, 152Gd, 238U; calculated ground-state band levels.
JINR-P4-11982 (1978)
R.B.Begzhanov, I.N.Mikhailov, R.Kh.Safarov, B.Choriev
Anomalous Moment of Inertia and the Coriolis Interaction in the Actinides.
NUCLEAR STRUCTURE 236,238U, 232Th; calculated rotational band spectra. Matrix elements of Coriolis interaction given by semi-microscopic theory.
Atlas of Gamma-Ray Spectra from the Inelastic Scattering of Reactor Fast Neutrons, Part I and II, Atomizdat, Moscow (1978)
A.M.Demidov, I.Govor, Yu.K.Cherepantsev, M.R.Ahmed, S.Al-Najjar, M.A.Al-Amili, N.Al-Assafi, N.Rammo
COMPILATION Z=3-92; compiled experimental values of Eγ, Iγ, decay schemes, energy levels.
Phys.Scr. 18, 311 (1978)
S.Gerstenkorn, J.Chauville, F.Tomkins
Deplacements Isotopiques et Moments Quadrupolaires Intrinseques des Isotopes Pairs 234, 236 et 238 de l'Uranium
NUCLEAR MOMENTS 234,236,238U; measured isotope shift; deduced quadrupole moment. Relative optical isotope shift method.
Nucl.Instrum.Methods 154, 335 (1978)
M.Kase, J.Kikuchi, T.Doke
Half-Life of 238U Spontaneous Fission and Its Fragment Kinetic Energies
RADIOACTIVITY 238U(SF); measured T1/2, fragment kinetic energy. Cylindrical gridded ionization chamber.
Z.Phys. A284, 233 (1978)
J.Konijn, F.W.N.de Boer, P.Koldewijn, R.Beetz, L.K.Peker
Aligned Rotation of Octupole-Vibrational States in Deformed Nuclei
NUCLEAR STRUCTURE 154Gd, 156Dy, 162Er, 238U; calculated levels. VMI model.
Ann.Acad.Brasil.Cienc. 50, 303 (1978)
D.M.de C.Rizzo
Fissao Espontanea do 238U e Medida da sua Constante de Desintegracao
RADIOACTIVITY 238U(SF); measured decay constant.
Prog.Theor.Phys. 60, 1002 (1978)
M.Toyama
Level Energies and B(E2) Ratios of the Deformed Even Nuclei in the Actinide Region
NUCLEAR STRUCTURE 228,230,232Th, 232,234,236,238U, 238,240Pu, 246Cm, 250Cf; calculated energies of ground state rotational band, B(E2). Collective Hamiltonian, anharmonic term in β-vibration plus rotation, adiabatic treatment.
J.Inorg.Nucl.Chem. 41, 1 (1979)
M.Attrep, Jr., W.B.Ledbetter, D.K.Riddle
The Effects of Boron and Lithium on the Ratio of Induced to Spontaneous Fission in Natural Uranium
RADIOACTIVITY, Fission 238U (SF); measured activity; deduced effect of lithium, boron on T1/2(SF) from changes in 235U(n, F) yield. Natural uranium source.
doi: 10.1016/0022-1902(79)80383-8
Phys.Rev.Lett. 42, 1596 (1979)
G.Ulfert, V.Metag, D.Habs, H.J.Specht
Quadrupole Moment of the 200-ns Fission Isomer in 237U
NUCLEAR REACTIONS 238U(d, pn), E=20 MeV; measured yield of fission-isomeric recoil. 238mU level deduced quadrupole moment.
doi: 10.1103/PhysRevLett.42.1596
Proc.Intern.Conf. on Nuclear Cross Section for Technology, Knoxville, 1979, p.680 (1980); NBS-SP-594 (1980)
A.Mittler, G.P.Couchell, W.A.Schier, S.Ashar, J.H.Chang, A.T.Y.Wang
Neutron Inelastic Scattering Cross Sections of 238U via (n, n'γ)
NUCLEAR REACTIONS 238U(n, n'γ), E=0.7-1.96 MeV; measured Eγ, Iγ, γ production σ(E). 238U deduced levels, γ transitions, level production σ.
Nucl.Instrum.Methods 178, 163 (1980)
A.G.Popeko, G.M.Ter-Akopian
Measurement of the 238U Spontaneous-Fission Halflife by Detecting Prompt Neutrons
RADIOACTIVITY, Fission 238U(SF); measured T1/2. 3He-filled proportional counter neutron detector.
Ann.Acad.Brasil.Cienc. 52, 213 (1980)
E.R.V.Spaggiari
Determinacao do Alcance Efectivo de Fragmentos de Fissao no UO2 e da Constante de Desintegracao para a Fissao Espontanea do Uranio-238
NUCLEAR STRUCTURE 238,235U; measured not abstracted; deduced fission characteristics.
Ann.Acad.Brasil.Cienc. 53, 437 (1981)
Z.N.R.Baptista, M.S.M.Mantovani, F.B.Ribeiro
Contribuicao para a Determinacao da Constante de Fissao Espontanea do Uranio
NUCLEAR STRUCTURE 238U; measured not abstracted; deduced SF-decay constant.
Phys.Scr. 24, 337 (1981)
E.Grosse, A.Balanda, H.Emling, F.Folkmann, P.Fuchs, R.B.Piercey, D.Schwalm, R.S.Simon, H.J.Wollersheim, D.Evers, H.Ower
Collective Rotation of 238U at High Spins
NUCLEAR REACTIONS 238U(208Pb, 208Pb'), E=5.3, 5.9 MeV/nucleon; measured Eγ, Iγ, γγ-coin, Coulomb excitation, DSA. 238U deduced ground state band B(E2), T1/2, octupole bands, high-spin state collectivity. Rigid rotor description.
Nucl.Instrum.Methods 197, 417 (1982)
H.G.De Carvalho, J.B.Martins, E.L.Medeiros, O.A.P.Tavares
Decay Constant for the Spontaneous-Fission Process in 238U
RADIOACTIVITY, Fission 238U(SF); measured decay constant. Etched track technique.
At.Energ. 55, 97 (1983); Sov.At.Energy 55, 528 (1983)
S.N.Belenky, M.D.Skorokhvatov, A.V.Etenko
Measurement of the Characteristics of Spontaneous Fission of 238U and 236U
RADIOACTIVITY 238,236U(SF); measured T1/2, prompt neutron average number per fission, its variance.
Z.Phys. A313, 351 (1983)
H.R.Faust
On the Octupole Excitation in 236U
NUCLEAR REACTIONS 236U(n, e-), E=thermal; measured I(ce). 236U deduced subshell ICC. Electron penetration formalism.
INDC(CCP)-240/G, Vol.3, p.3 (1984)
M.V.Blinov, B.D.Stsiborsky, A.A.Filatenkov, B.M.Shiryaev
γ-Radiation Spectra Produced by the Interaction of 3 MeV Neutrons with 232Th, 235U and 238U
NUCLEAR REACTIONS 232Th, 235,238U(n, n'γ), E=3 MeV; measured Eγ, Iγ. 232Th, 235,238U deduced levels.
Helv.Phys.Acta 57, 292 (1984)
R.Vartanian
Spontaneous Fission Decay Constant of 238U: Measured by fission track technique
RADIOACTIVITY 238U(SF); measured SF decay constant. Fission track technique.
Helv.Phys.Acta 57, 416 (1984)
R.Vartanian
Spontaneous Fission Decay Constant of 238U: Measured by the fission track technique
RADIOACTIVITY 238U(SF); measured SF decay constant. Fission track technique.
Nucl.Instrum.Methods 234, 152 (1985)
M.P.Ivanov, G.M.Ter-Akopian, B.V.Fefilov, A.S.Voronin
Study of 238U Spontaneous Fission using a Double Ionization Chamber
RADIOACTIVITY 238U(SF); measured fission fragment total kinetic energy, mass, energy distributions, T1/2(SF).
At.Data Nucl.Data Tables 36, 1 (1987)
S.Raman, C.H.Malarkey, W.T.Milner, C.W.Nestor, Jr., P.H.Stelson
Transition Probability, B(E2), from the Ground to the First-Excited 2+ State of Even-Even Nuclides
COMPILATION A=6-254; compiled, evaluated 2+ level energies, B(E2), T1/2, β2, β2/β2(sp), EWSR, intrinsic quadrupole moments.
doi: 10.1016/0092-640X(87)90016-7
Nucl.Phys. A476, 39 (1988)
R.D.Heil, H.H.Pitz, U.E.P.Berg, U.Kneissl, K.D.Hummel, G.Kilgus, D.Bohle, A.Richter, C.Wesselborg, P.von Brentano
Observation of Orbital Magnetic Dipole Strength in the Actinide Nuclei 232Th and 238U
NUCLEAR REACTIONS 232Th, 238U(e, e'), E=20.2-55.9 MeV; measured σ(E(e-)), θ=165°. 232Th, 238U(γ, γ'), E=2.9-4.1 MeV bremsstrahlung; measured Eγ, Iγ. 232Th, 238U deduced levels, J, π, B(M1), transition form factors.
doi: 10.1016/0375-9474(88)90371-5
Nucl.Phys. A502, 363c (1989)
V.E.Makarenko, Yu.D.Molchanov, G.A.Otroshchenko, G.B.Yankov
Ternary Fission of Neutron Induced Uranium Fissioning Isomers
RADIOACTIVITY 236m,238mU(SF) [from 238,236U(n, n'), E=4.5 MeV]; measured T1/2, fission fragment; deduced relative fission probabilities.
doi: 10.1016/0375-9474(89)90675-1
Nucl.Phys. A571, 569 (1994)
F.K.McGowan, W.T.Milner
Coulomb Excitation of States in 238U
NUCLEAR REACTIONS 238U(α, α'γ), E=18 MeV; measured Iγ, Eγ, γ(θ) following Coulomb excitation. 238U levels deduced B(λ), J, π, δ.
doi: 10.1016/0375-9474(94)90226-7
Phys.Rev. C49, 3346 (1994)
R.J.McLeod
Klein-Gordon Versus Relativistic Schrodinger Equations in Pion-Nucleus Scattering
NUCLEAR REACTIONS 40Ca(π+, π+), E=180-500 MeV; calculated σ(θ); deduced models difference. Relativistic Schrodinger, Klein-Gordon equations.
J.Phys.(London) G20, L67 (1994)
N.Minkov, R.P.Roussev, P.P.Raychev
Shell Correlations in the SU(q)(2) Rotor Model
NUCLEAR STRUCTURE 146Gd, 170,172,174,176,178Hf, 164,166Er, 170,172,174,168,176Yb, 228,230,232Th, 230,232,234,236,238U, 236,238,240,242,244Pu, 248Cm; calculated spectra; deduced nucleon pairs number, quantum algebraic parameter τ correlation. Data comparison, SU(q)(2) rotor model.
doi: 10.1088/0954-3899/20/6/002
Nucl.Phys. A576, 351 (1994)
D.Troltenier, J.P.Draayer, P.O.Hess, O.Castanos
Investigations of Rotational Nuclei via the Pseudo-Symplectic Model
NUCLEAR STRUCTURE 160Dy, 168Er, 234,236,238U; calculated levels, B(λ), static quadrupole moments; deduced model limiting features. Pseudo-symplectic theory, review.
doi: 10.1016/0375-9474(94)90249-6
Phys.Rev. C52, R468 (1995)
A.Zilges, P.von Brentano, R.-D.Herzberg, U.Kneissl, J.Margraf, H.Maser, N.Pietralla, H.H.Pitz
Strong Dipole Excitations Around 1.8 MeV in 238U
NUCLEAR REACTIONS 238U(γ, γ'), E=1.5-2.0 MeV; measured Eγ, Iγ. 238U deduced levels, J, π, γ-multipolarity, K-quantum number, γ-branching, Γ0, T1/2, B(λ). High resolution strudy.
Phys.Rev.Lett. 76, 1031 (1996); Erratum Phys.Rev.Lett. 77, 4278 (1996)
S.R.Elliott, P.Beiersdorfer, M.H.Chen
Trapped-Ion Technique for Measuring the Nuclear Charge Radii of Highly Charged Radioactive Isotopes
NUCLEAR MOMENTS 233,238U; measured charge radii. Crystal spectrometer, X-ray spectra analysis.
doi: 10.1103/PhysRevLett.76.1031
Nucl.Phys. A600, 88 (1996)
D.Ward, H.R.Andrews, G.C.Ball, A.Galindo-Uribarri, V.P.Janzen, T.Nakatsukasa, D.C.Radford, T.E.Drake, J.DeGraaf, S.Pilotte, Y.R.Shimizu
Rotational Bands in 238U
NUCLEAR REACTIONS 238U(209Bi, 209Bi'), E=1.13, 1.33 GeV; measured Eγ, Iγ, γγ-coin following Coulomb excitation. 238U deduced levels, J, π, K, band structure. Compton suppressed hyperpure Ge detector array, 4π-BGO ball. Cranked RPA calculation.
doi: 10.1016/0375-9474(95)00490-4
J.Phys.Soc.Jpn. 67, 2641 (1998)
S.Tsutsui, S.Nasu, M.Nakada, N.M.Masaki, M.Saeki, K.Ikushima, H.Yasuoka, A.Nakamura
Nuclear Magnetic Moment of the First Excited State (I = 2+) of 238U
NUCLEAR REACTIONS 238U(γ, γ), E=44.91 keV; measured Mossbauer spectra vs temperature. 238U deduced excited state magnetic moment.
Pure Appl.Chem. 72, 1525 (2000); Erratum Pure Appl.Chem. 73, 1225 (2001)
N.E.Holden, D.C.Hoffman
Spontaneous Fission Half-Lives for Ground-State Nuclides (Technical Report)
COMPILATION 208Pb, 230,232Th, 231Pa, 230,232,233,234,235,236,238U, 237Np, 236,238,239,240,241,242,244Pu, 241,242m,243Am, 240,242,243,244,245,246,248,250Cm, 249Bk, 237,238,240,242,246,248,249,250,252,254,256Cf, 253,254,254m,255Es, 242,243,244,245,246,248,250,250m,252,254,255,256,257,258,259,260Fm, 245,247,248,255,256,257,258,258m,259,260Md, 250,251,252,254,254m,256,257,258,259,260,262No, 252,253,254,255,256,257,258,259,261,262Lr, 253,254,255,256,257,258,259,260,261,262Rf, 255,256,257,258,260,261,262,262Db, 258,259,260,261,263,265,266Sg, 261,262,262mBh, 264,265,267Hs, 266Mt; compiled, evaluated spontaneous fission T1/2.
Acta Phys.Hung.N.S. 13, 139 (2001)
A.V.Afanasjev, P.Ring
Properties of Superdeformed Fission Isomers in the Cranked Relativistic Hartree-Bogoliubov Theory
NUCLEAR STRUCTURE 236,238U, 236,239,240Pu, 242Am; calculated superdeformed fission isomers moments of inertia, quadrupole moments. Cranked relativistic Hartree-Bogoliubov theory, comparison with data.
doi: 10.1556/APH.13.2001.1-3.15
Geochim.Cosmochim.Act. 65, 111 (2001)
F.Begemann, K.R.Ludwig, G.W.Lugmair, K.Min, L.E.Nyquist, P.J.Patchett, P.R.Renne, C.-Y.Shih, I.M.Villa, R.J.Walker
Call for an improved set of decay constants for geochronological use
RADIOACTIVITY 40K, 87Rb, 147Sm, 176Lu, 187Re, 190Pt, 235,238U; compiled, analyzed T1/2. Application to geo- and cosmochronology discussed.
Phys.Rev. C63, 014312 (2001)
B.Buck, A.C.Merchant, S.M.Perez
Transition Quadrupole Moments in Superdeformed Bands
NUCLEAR STRUCTURE 60,62Zn, 80,82Sr, 84,86Zr, 132Ce, 134Nd, 142Sm, 146,148,150Gd, 152,154Dy, 190,192,194Hg, 194,196Pb, 236,238U; calculated superdeformed bands transition quadrupole moments; deduced cluster configuration features. Binary cluster model, comparisons with data.
doi: 10.1103/PhysRevC.63.014312
Nucl.Phys. A695, 95 (2001)
P.Demetriou, S.Goriely
Microscopic Nuclear Level Densities for Practical Applications
NUCLEAR STRUCTURE 29Si, 45Ca, 54Cr, 60Co, 62Ni, 72Ga, 81Se, 87Sr, 93,96Mo, 104Rh, 111Cd, 118Sn, 127Te, 131Ba, 143Ce, 148Sm, 155Eu, 162Dy, 170Tm, 177Lu, 183W, 192Ir, 208,209Pb, 210Bi, 238U; calculated level density distributions. Global microscopic model.
doi: 10.1016/S0375-9474(01)01095-8
Chin.Phys.Lett. 18, 193 (2001)
X.-Z.Fang, T.-N.Ruan
Analysis of the Yrast Bands with q-Deformed Moment of Inertia
NUCLEAR STRUCTURE 156Gd, 162,164Dy, 164,166Er, 168,170,172,174,176Yb, 170,172,174,176,178Hf, 228,230,232Th, 236,238U, 236,238,240,242,244Pu, 248Cm; calculated yrast rotational band parameters. Comparisons with data.
doi: 10.1088/0256-307X/18/2/313
Phys.Rev. C64, 047303 (2001)
Z.Gacsi, M.Csatlos, A.Krasznahorkay, D.Sohler, J.Gulyas, J.Timar, M.Hunyadi, J.L.Weil, J.van Klinken
Low-Lying, Excited K = 0 Bands in 238U
NUCLEAR REACTIONS 234,236,238U(α, α'), E=19 MeV; measured Eγ, Iγ, E(ce), I(ce) following Coulomb excitation. 238U deduced transitions ICC, enhancement of E0 strength, K=0 bands moments of inertia.
doi: 10.1103/PhysRevC.64.047303
Nucl.Phys. A683, 383 (2001)
E.Gotsman, E.Levin, U.Maor, L.McLerran, K.Tuchin
Higher Twists and Maxima for DIS on Nuclei in High Density QCD Region
NUCLEAR STRUCTURE A=30; Zn, 119Sn, 238U; calculated structure functions, twist contributions for deep inelastic scattering.
doi: 10.1016/S0375-9474(00)00464-4
Prog.Theor.Phys.(Kyoto) 105, 915 (2001)
T.Ichikawa, T.Wada, M.Ohta
Fission Width of Compound Nuclei Calculated Using the Mean First Passage Time Method
NUCLEAR STRUCTURE 238U; calculated fission width vs angular momentum. Mean first passage time method.
NUCLEAR REACTIONS 100Mo, 110Pd(100Mo, X), 110Pd(110Pd, X), E(cm)=170-290 MeV; calculated fission barrier, evaporation residue σ. Mean first passage time method.
Yad.Fiz. 64, No 6, 1228 (2001); Phys.Atomic Nuclei 64, 1152 (2001)
L.Majling, Yu.A.Batusov
Spectroscopy of the Λ Hypernuclei: New problems and prospects
NUCLEAR STRUCTURE 3,4H, 4,5He, 9Be, 11B, 12C, 16O, 28Si, Fe, 209Bi, 238U; analyzed hypernucleus decay features.
doi: 10.1134/1.1383633
Phys.Rep. 354, 157 (2001)
G.E.Mitchell, J.D.Bowman, S.I.Penttila, E.I.Sharapov
Parity Violation in Compound Nuclei: Experimental methods and recent results
NUCLEAR STRUCTURE 81Br, 93Nb, 103Rh, 107,109Ag, 104,105,106,108Pd, 113Cd, 115In, 117Sn, 121,123Sb, 127I, 131Xe, 133Cs, 139La, 232Th, 238U; compiled, analyzed resonance parameters, parity nonconserving asymmetry data.
doi: 10.1016/S0370-1573(01)00016-3
Nature(London) 409, 785 (2001)
P.Moller, D.G.Madland, A.J.Sierk, A.Iwamoto
Nuclear Fission Modes and Fragment Mass Asymmetries in a Five-Dimensional Deformation Space
NUCLEAR STRUCTURE 228Ra, 234U, 256,258Fm; calculated potential energy surfaces; deduced fission mode features. 220,222,224,226,228,230,232Th, 228,230,232,234,236,238,240U, 234,236,238,240,242,244,246Pu, 240,242,244,246,248,250,252Cm, 246,248,250,252,254,256,258Cf, 246,248,250,252,254,256,258Fm; calculated average fragment mass division in asymmetric fission. Five-dimensional shape-coordinate grid. Comparisons with data.
doi: 10.1038/35057204
Phys.Lett. 515B, 269 (2001)
J.Morgenstern, Z.-E.Meziani
Is the Coulomb Sum Rule Violated in Nuclei ?
NUCLEAR STRUCTURE 40,48Ca, 56Fe, 197Au, 208Pb, 238U; analyzed electron scattering response functions; deduced quenching, no saturation of Coulomb sum.
doi: 10.1016/S0370-2693(01)00873-5
Yad.Fiz. 64, No 8, 1496 (2001); Phys.Atomic Nuclei 64, 1419 (2001)
A.R.Safarov, R.Kh.Safarov, A.S.Sitdikov
Parity Splitting in Nuclei Involving Octupole Correlations and the Alignment of the Angular Momentum
NUCLEAR STRUCTURE 224,226,228Ra, 226,228,230,232Th, 230,232,234,236,238U; calculated rotational bands parity-splitting energy, angular momentum alignment.
doi: 10.1134/1.1398934
Phys.Rev.Lett. 87, 082501 (2001)
A.Trzcinska, J.Jastrzebski, P.Lubinski, F.J.Hartmann, R.Schmidt, T.von Egidy, B.Klos
Neutron Density Distributions Deduced from Antiprotonic Atoms
NUCLEAR REACTIONS 40,48Ca, 54,56,57Fe, 59Co, 58,60,64Ni, 90,96Zr, 112,116,120,124Sn, 116Cd, 128Te, 208Pb, 209Bi, 232Th, 238U(p-bar, X), E at rest; measured x-ray spectra, residual annihilation yields. 40,48Ca, 54,56,57Fe, 59Co, 58,60,64Ni, 90,96Zr, 112,116,120,124Sn, 116Cd, 128Te, 208Pb, 209Bi, 232Th, 238U deduced neutron radii, density distributions.
doi: 10.1103/PhysRevLett.87.082501
Nucl.Phys. A692, 176c (2001)
A.Trzcinska, J.Jastrzebski, T.Czosnyka, T.von Egidy, K.Gulda, F.J.Hartmann, J.Iwanicki, B.Ketzer, M.Kisielinski, B.Klos, W.Kurcewicz, P.Lubinski, P.J.Napiorkowski, L.Pienkowski, R.Schmidt, E.Widmann
Information on Antiprotonic Atoms and the Nuclear Periphery from the PS209 Experiment
NUCLEAR STRUCTURE 48Ca, 112,116,120,124Sn, 208Pb; analyzed antiproton annihilation data; deduced neutron-to-proton density ratios.
ATOMIC PHYSICS 16O, 40,42,43,44,48Ca, 54,56,57,58Fe, 59Co, 58,60,62,64Ni, 90,96Zr, 106,116Cd, 112,116,120,124Sn, 122,124,126,128,130Te, 172,176Yb, 208Pb, 209Bi, 232Th, 238U; measured antiprotonic atoms strong interaction level widths, shifts.
doi: 10.1016/S0375-9474(01)01176-9
Czech.J.Phys. 52, 567 (2002)
A.S.Barabash
Average (Recommended) Half-Life Values for Two-Neutrino Double-Beta Decay
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 150Nd, 238U(2β-); compiled, analyzed 2ν-accompanied 2β-decay T1/2.
Yad.Fiz. 65, 701 (2002); Phys.Atomic Nuclei 65, 669 (2002)
B.Buck, A.C.Merchant, S.M.Perez
Transition Quadrupole Moments in Superdeformed Bands
NUCLEAR STRUCTURE 60,62Zn, 80,82Sr, 84,86Zr, 132Ce, 134Nd, 142Sm, 146,148,150Gd, 152,154Dy, 190,192,194Hg, 194,196Pb, 236,238U; calculated superdeformed bands transition quadrupole moments. Binary cluster approach, comparisons with data.
doi: 10.1134/1.1471271
Phys.Rev. C66, 034306 (2002)
Y.K.Gambhir, A.A.Bhagwat
Relativistic Mean Field for Nuclear Periphery
NUCLEAR STRUCTURE 48Ca, 58Ni, 96Zr, 96,104Ru, 100Mo, 106,116Cd, 112,124Sn, 128,130Te, 144,154Sm, 148Nd, 160Gd, 176Yb, 232Th, 238U; calculated binding energies, deformation parameters, radii, density distributions, peripheral factors. Relativistic mean field approach, comparisons with data.
doi: 10.1103/PhysRevC.66.034306
Eur.Phys.J. A 15, 209 (2002)
M.Girod, J.Libert, J.P.Delaroche, P.Romain
Microscopic structure of superdeformed states in Th, U, Pu and Cm isotopes with Gogny force
NUCLEAR STRUCTURE 226,228,230,232,234Th, 230,232,234,236,238,240U, 240,242,244,246Pu, 242,244,246,248Cm; calculated normal and superdeformed level energies, collective features. Microscopic mean-field approach, Gogny force. Comparisons with data.
doi: 10.1140/epja/i2001-10256-2
Czech.J.Phys. 52, 513 (2002)
J.G.Hirsch, O.Castanos, P.O.Hess, V.E.Ceron, O.Civitarese
Double-Beta Decay in Deformed Nuclei
RADIOACTIVITY 146,148,150Nd, 160Gd, 186W, 192Os, 238U(2β-); 156Dy, 162Er, 168Yb(2EC); calculated 0ν- and 2ν-accompanied 2β-decay T1/2. Pseudo-SU(3) model, deformed nuclei.
J.Nucl.Sci.Technol.(Tokyo) 39, 807 (2002)
T.Kawano, K.Shibata
Uncertainty Analyses in the Resolved Resonance Region of 235U, 238U, and 239Pu with the Reich-Moore R-Matrix Theory for JENDL-3.2
NUCLEAR STRUCTURE 235,238U, 239Pu; analyzed data; deduced covariances for resolved resonance parameters. Reich-Moore R-matrix theory.
Acta Phys.Hung.N.S. 16, 419 (2002)
G.Maino
A Simple Model of Superheavy Nuclei
NUCLEAR STRUCTURE 230,232Th, 234,236,238U, 238,242Pu, 246,248Cm, 254No, 256Rf, 260,266Sg, 262No, 262Rf, 264,268,270Hs, 278Fl, 292120; calculated transitions B(E2). Algebraic model, comparisons with data.
doi: 10.1556/APH.16.2002.1-4.44
Eur.Phys.J. D 21, 255 (2002)
M.Oba, K.Akaoka, M.Miyabe, I.Wakaida
Isotope Shift and Hyperfine Structure of the Highly Excited Atomic Uranium
NUCLEAR MOMENTS 234,235,236,238U; measured hfs, isotope shifts. Two-color Doppler-free two-photon absorption technique.
doi: 10.1140/epjd/e2002-00215-y
J.Nucl.Radiochem.Sci. 3, No 1, 43 (2002)
D.N.Poenaru, W.Greiner, Y.Nagame, R.A.Gherghescu
Nuclear Shapes in Complex Fission Phenomena
NUCLEAR STRUCTURE 238U, 228,232Th; calculated fission associated deformations, saddle-point deformation energies.
Phys.Rev. C65, 064322 (2002)
A.A.Raduta, D.Ionescu, A.Faessler
Unified Description of Three Positive and Three Negative Parity Interacting Bands
NUCLEAR STRUCTURE 158Gd, 172Yb, 218,226Ra, 232Th, 238U, 238Pu; calculated rotational bands moments of inertia, excitation energies, transition probabilities. Unified description of multiple bands, comparison with data.
doi: 10.1103/PhysRevC.65.064322
At.Data Nucl.Data Tables 80, 83 (2002)
V.I.Tretyak, Y.G.Zdesenko
Table of Double Beta Decay Data - An Update
COMPILATION 36Ar, 40,46,48Ca, 50Cr, 54Fe, 58Ni, 64,70Zn, 76Ge, 74,80,82Se, 78,86Kr, 84Sr, 94,96Zr, 92,98,100Mo, 96,104Ru, 102,110Pd, 106,108,114,116Cd, 102,122,124Sn, 120,128,130Te, 124,126,134,136Xe, 130,132Ba, 136,138,142Ce, 146,148,150Nd, 144,154Sm, 152,160Gd, 156,158Dy, 162,164,170Er, 168,176Yb, 174Hf, 180,186W, 184,192Os, 190,198Pt, 196,204Hg, 232Th, 238U; compiled 2β-decay T1/2, limits.
Nucl.Instrum.Methods Phys.Res. B194, 229 (2002)
R.K.Tripathi, J.W.Wilson, F.A.Cucinotta
A method for calculating proton-nucleus elastic cross-sections
NUCLEAR REACTIONS 9Be, 12C, 27Al, 56Fe, 208Pb, 238U(p, p), E ≈ 5-10000 MeV; calculated elastic σ, medium corrections. Comparison with data.
doi: 10.1016/S0168-583X(02)00690-0
J.Phys.(London) G28, 2187 (2002)
A.Tsvetkov, J.Kvasil, R.G.Nazmitdinov
Octupole Deformations in Actinides at High Spins within the Cranking Skyrme-Hartree-Fock Approach
NUCLEAR STRUCTURE 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233Ra, 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233Th, 223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238U; calculated dipole, quadrupole, and octupole moments vs angular frequency. Cranked Skyrme-Hartree-Fock approach.
doi: 10.1088/0954-3899/28/8/305
Acta Phys.Pol. B34, 2147 (2003)
G.G.Adamian, A.V.Andreev, N.V.Antonenko, S.P.Ivanova, R.V.Jolos, W.Scheid, T.M.Shneidman
Dinuclear system phenomena in nuclear structure and nuclear reactions
NUCLEAR STRUCTURE 146Ba, 148Nd, 222Ra, 242Pu; calculated level energies for alternating-parity states. 194Hg, 194Pb, 234,236,238U, 236,239,240Pu, 240Am, 230,231,233Th; calculated cluster states quadrupole moments, related features. Dinuclear system approach, comparison with data.
Acta Phys.Pol. B34, 1729 (2003)
G.G.Adamian, N.V.Antonenko, R.V.Jolos, W.Scheid, T.M.Shneidman
Cluster features in reactions and structure of heavy nuclei
NUCLEAR STRUCTURE 220,222,224,226Ra, 222,224,226,228,230,232Th, 236,238U; calculated levels, J, π, transition moments; deduced cluster effects. Comparison with data.
Acta Phys.Hung.N.S. 18, 311 (2003)
G.G.Adamian, A.V.Andreev, N.V.Antonenko, S.P.Ivanova, N.Nenoff, W.Scheid, T.M.Shneidman
Cluster Interpretation of Highly Deformed Nuclear States
NUCLEAR STRUCTURE 194Hg, 194Pb, 236,238U, 236,239,240Pu, 240Am, 230,231,233Th, 234,236U; calculated superdeformed and hyperdeformed cluster configurations transition energies. Dinuclear system approach.
doi: 10.1556/APH.18.2003.2-4.32
Phys.Rev. C 68, 024313 (2003)
B.Buck, A.C.Merchant, S.M.Perez
Theory of band comparison in even-even nuclei
NUCLEAR STRUCTURE 142,144,146Ba, 146,148Ce, 146,148,150,152Nd, 150,152,154Sm, 218,220,222,224,226Ra, 222,224,226,228,230,232,234Th, 230,232,234,236,238U, 236,238,240,242,244Pu; calculated rotational bands relative μ, B(E2). 148,150Gd, 152,154Dy, 190,192,194Hg, 194,196Pb; calculated superdeformed bands relative μ, B(E2). 212Pb, 212Po; calculated superdeformed bands features. Cluster model.
doi: 10.1103/PhysRevC.68.024313
Acta Phys.Hung.N.S. 18, 303 (2003)
B.Buck, A.C.Merchant, S.M.Perez
Criteria for Comparison of Bands in Even-Even Nuclei
NUCLEAR STRUCTURE 142,144,146Ba, 146,148Ce, 146,148,150,152Nd, 150,152,154Sm, 218,222,224,226Ra, 222,226,228,230,232,234Th, 230,232,234,236,238U, 238,240,242,244Pu; analyzed rotational bands, fractional change in transition energies and reduced mass. Cluster model.
doi: 10.1556/APH.18.2003.2-4.31
Nucl.Phys. B(Proc.Supp.) S118, 287 (2003)
O.Cremonesi
Neutrinoless Double Beta Decay: Present and Future
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 136Xe, 150Nd, 238U(2β-); compiled, analyzed 2β-decay T1/2.
doi: 10.1016/S0920-5632(03)01331-8
Nucl.Instrum.Methods Phys.Res. B211, 15 (2003)
A.Deppman, O.A.P.Tavares, S.B.Duarte, J.D.T.Arruda-Neto, M.Goncalves, V.P.Likhachev, J.Mesa, E.C.de Oliveira, S.R.de Pina, O.Rodriguez
A Monte Carlo method for nuclear evaporation and fission at intermediate energies
NUCLEAR STRUCTURE 237Np, 238U, 232Th; calculated fissility vs excitation energy, competition with evaporation channels. Monte Carlo approach.
doi: 10.1016/S0168-583X(03)01265-5
Rev.Mod.Phys. 75, 35 (2003)
R.D.Deslattes, E.G.Kessler, Jr., P.Indelicato, L.de Billy, E.Lindroth, J.Anton
X-ray transition energies: new approach to a comprehensive evaluation
COMPILATION Ne, Na, Mg, Al, Si, P, S, Cl, Ar, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, Ge, As, Se, Br, Kr, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, I, Xe, Cs, Ba, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, 209Bi, 209Po, 210At, 222Rn, 223Fr, 226Ra, 227Ac, 232Th, 231Pa, 233,238U, 237Np, 239,244Pu, 241,243Am, 245,248Cm, 249,250Bk, 249,250,251Cf, 251Es, 254Fm; compiled, analyzed, evaluated E(K X-ray), E(L X-ray) and provide X-rays tabulations.
Nucl.Phys. A721, 171c (2003)
E.Fiorini
Searches on Double Beta Decay and Dark Matter
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 134,136Xe, 150Nd, 238U(2β); compiled, analyzed 0ν-accompanied 2β-decay T1/2 and neutrino mass data. Implications for dark matter search discussed.
doi: 10.1016/S0375-9474(03)01030-3
J.Radioanal.Nucl.Chem. 258, 117 (2003)
S.Guedes, J.C.Hadler, J.E.S.Sarkis, K.M.G.Oliveira, M.H.Kakazu, P.J.Iunes, M.Saiki, C.A.Tello, S.R.Paulo
Spontaneous-fission decay constant of 238U measured by nuclear track techniques without neutron irradiation
RADIOACTIVITY 238U(α), (SF); measured track densities; deduced fission decay constant.
J.Radioanal.Nucl.Chem. 256, 155 (2003)
J.C.Hadler, G.Bigazzi, S.Guedes, P.J.Iunes, M.Oddone, C.A.Tello, S.R.Paulo
Spontaneous 238U fission half-life measurements based on fission-track techniques
RADIOACTIVITY 238U(SF); analyzed T1/2 data. Comparison of fission-track and other techniques. Determination of recommended values discussed.
Phys.Rev. C 67, 048501 (2003)
Y.Horikawa, A.Haga
Gauge invariant evaluation of nuclear polarization with the collective model
NUCLEAR MOMENTS 208Pb, 238U; calculated nuclear polarization energy shifts in hydrogenlike ions.
ATOMIC PHYSICS 208Pb, 238U; calculated nuclear polarization energy shifts in hydrogenlike ions.
doi: 10.1103/PhysRevC.67.048501
Nucl.Phys. A713, 24 (2003)
V.P.Likhachev, J.Mesa, J.D.T.Arruda-Neto, B.V.Carlson, W.R.Carvalho, Jr., L.C.Chamon, A.Deppman, H.Dias, M.S.Hussein
Quasi-free 238U(e, e'f) cross section in macroscopic-microscopic approach
NUCLEAR REACTIONS 238U(e, e'X), E=720 MeV; calculated quasifree electrofission σ(E, θ). Comparison with data.
NUCLEAR STRUCTURE 238U; calculated single-particle level energies. 237,238U, 237Pa; calculated fissility vs excitation energy.
doi: 10.1016/S0375-9474(02)01302-7
Phys.Rev. C 68, 014615 (2003)
V.P.Likhachev, J.D.T.Arruda-Neto, W.R.Carvalho, Jr., A.Deppman, I.G.Evseev, F.Garcia, M.S.Hussein, L.F.R.Macedo, A.Margaryan, J.Mesa, V.O.Nesterenko, O.Rodriguez, S.A.Pashchuk, H.R.Schelin, M.S.Vaudeluci
Inclusive quasifree electrofission cross section for 238U
NUCLEAR STRUCTURE 237,238U, 237Pa; calculated fissility vs excitation energy.
NUCLEAR REACTIONS 238U(e, e'p), (e, e'), E=300 MeV; calculated σ(E, θ). 238U(e, F), E=100-250 MeV; measured fission σ; deduced reaction mechanism features.
doi: 10.1103/PhysRevC.68.014615
Bull.Rus.Acad.Sci.Phys. 67, 1763 (2003)
V.M.Maslov, Yu.V.Porodzinsky, M.Baba, A.Hasegawa
Neutron scattering from U and Th nuclei with excitation of collective levels in nuclei
NUCLEAR REACTIONS 232,238U, 232Th(n, n'X), E=1.2 MeV; calculated neutron spectra, role of collective level excitation. Comparison with data.
NUCLEAR STRUCTURE 232,238U, 232Th; calculated levels, J, π.
J.Phys.(London) G29, L37 (2003)
V.O.Nesterenko, V.P.Likhachev, P.-G.Reinhard, J.Mesa, W.Kleinig, J.D.T.Arruda-Neto, A.Deppman
Deformation effects in low-momentum distributions of heavy nuclei
NUCLEAR STRUCTURE 238U; calculated momentum distributions of deep hole proton states, ground-state quadrupole moments. Comparison of Woods-Saxon and Skyrme-Hartree-Fock approaches.
doi: 10.1088/0954-3899/29/4/101
Europhys.Lett. 64, 164 (2003)
D.N.Poenaru, W.Greiner
Deformation energy minima at finite mass asymmetry
NUCLEAR STRUCTURE 226,228,230,232,234,236,238Th, 230,232,234,236,238U; calculated saddle point deformation energy vs mass asymmetry. Phenomenological shell corrections.
doi: 10.1209/epl/i2003-00612-8
Phys.Rev. C 67, 044312 (2003)
A.A.Raduta, D.Ionescu
New signatures for octupole deformation in some actinide nuclei
NUCLEAR STRUCTURE 218Ra, 228,232Th, 238Pu, 232,234,236,238U; calculated rotational and vibrational bands transition energies, moments of inertia, octupole deformation effects. Extended coherent state model.
doi: 10.1103/PhysRevC.67.044312
Phys.Rev. C 67, 014313 (2003)
T.M.Shneidman, G.G.Adamian, N.V.Antonenko, R.V.Jolos, W.Scheid
Cluster interpretation of properties of alternating parity bands in heavy nuclei
NUCLEAR STRUCTURE 222,224,226,228,230,232Th, 220,222,224,226Ra, 240,242Pu, 232,234,236,238U, 144,146,148Ba, 146,148Ce, 146,148Nd; calculated alternating parity bands levels, J, π, electric multipole transition moments. Cluster model, comparison with data.
doi: 10.1103/PhysRevC.67.014313
Phys.Rev. C 67, 014305 (2003)
N.V.Zamfir, D.Kusnezov
Octupole correlations in U and Pu nuclei
NUCLEAR STRUCTURE 230,232,234,236,238U, 238,240,242,244Pu; calculated, analyzed levels, J, π, B(E1), B(E2), B(E3); deduced octupole deformation, correlations. spdf interacting boson model.
doi: 10.1103/PhysRevC.67.014305
Nucl.Phys. A734, 433 (2004)
G.G.Adamian, N.V.Antonenko, R.V.Jolos, Yu.V.Palchikov, W.Scheid, T.M.Shneidman
Manifestation of cluster effects in the structure of medium mass and heavy nuclei
NUCLEAR STRUCTURE 144,146,148Ba, 146Ce; calculated alternating parity bands levels, J, π. 60Zn; calculated superdeformed band transitions branching ratios. 220,222,224,226Ra, 222,224,226,228,230,232Th, 234,236,238U; calculated dipole and quadrupole transition moments. Cluster model, comparisons with data.
doi: 10.1016/j.nuclphysa.2004.01.079
Yad.Fiz. 67, 1729 (2004); Phys.Atomic Nuclei 67, 1701 (2004)
G.G.Adamian, N.V.Antonenko, R.V.Jolos, Yu.V.Palchikov, W.Scheid, T.M.Shneidman
Nuclear Structure with the Dinuclear Model
NUCLEAR STRUCTURE 232,234,236,238U, 223Ra; calculated rotational bands level energies. 226Ra; calculated B(E2). 60Zn; calculated ground-state band and superdeformed band levels, J, π. Dinuclear system approach.
doi: 10.1134/1.1806910
Int.J.Mod.Phys. E13, 337 (2004)
A.Baran, P.Mierzynski
Nuclear periphery in Mean-Field models
NUCLEAR STRUCTURE 48Ca, 58Ni, 96Zr, 96,104Ru, 100Mo, 106,116Cd, 112,124Sn, 128,130Te, 144,154Sm, 148Nd, 160Gd, 176Yb, 232Th, 238U; calculated neutron excess factor. Comparison with data.
doi: 10.1142/S0218301304002156
Phys.Rev. C 69, 014305 (2004)
H.Ganev, V.P.Garistov, A.I.Georgieva
Description of the ground and octupole bands in the symplectic extension of the interacting vector boson model
NUCLEAR STRUCTURE 224,226Ra, 222,224,226,228,232Th, 234,236,238U, 168Yb, 152Sm; analyzed ground-state and octupole rotational band energies; deduced parameters. Symplectic extension of interacting vector boson model.
doi: 10.1103/PhysRevC.69.014305
Nucl.Phys. A731, 163 (2004)
M.S.Hussein, B.V.Carlson, L.F.Canto
Multiple giant resonances in nuclei: their excitation and decay
NUCLEAR STRUCTURE 40Ca, 120Sn, 132Xe, 165Ho, 208Pb, 238U; calculated double and triple GDR excitation and decay features.
doi: 10.1016/j.nuclphysa.2003.11.029
Yad.Fiz. 67, 614 (2004); Phys.Atomic Nuclei 67, 595 (2004)
B.S.Ishkhanov, V.N.Orlin
Generalized Model of Giant-Dipole-Resonance Splitting
NUCLEAR STRUCTURE 12C, 16O, 23Na, 24Mg, 27Al, 28Si, 34S, 40Ca, 48Ti, 54Fe, 63Cu, 72Ge, 82Se, 116,120Sn, 142,150Nd, 154Sm, 156Gd, 165Ho, 168Er, 178Hf, 181Ta, 182,184W, 197Au, 208Pb, 209Bi, 232Th, 235,238U, 239Pu; calculated GDR energies, widths, splitting, photoabsorption σ. Semimicroscopic model, comparison with data.
doi: 10.1134/1.1690070
Int.J.Mod.Phys. E13, 343 (2004)
J.Jastrzebski, A.Trzcinska, P.Lubinski, B.Klos, F.J.Hartmann, T.von Egidy, S.Wycech
Neutron density distributions from antiprotonic atoms compared with hadron scattering data
NUCLEAR STRUCTURE 40,48Ca, 54,56,57Fe, 58,60,64Ni, 59Co, 90,96Zr, 106,116Cd, 112,116,120,124Sn, 122,124,126,128,130Te, 208Pb, 209Bi, 232Th, 238U; analyzed antiproton annihilation data; deduced neutron and proton density distributions, radii.
doi: 10.1142/S0218301304002168
Phys.Rev.Lett. 92, 072501 (2004)
P.Moller, A.J.Sierk, A.Iwamoto
Five-Dimensional Fission-Barrier Calculations from 70Se to 252Cf
NUCLEAR STRUCTURE 70,76Se, 90,94,98Mo, 198Hg, 210,212Po, 228Ra, 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated fission barrier parameters. Macroscopic-microscopic model, comparison with previous results.
doi: 10.1103/PhysRevLett.92.072501
Phys.Rev. C 70, 057304 (2004)
V.O.Nesterenko, V.P.Likhachev, P.-G.Reinhard, V.V.Pashkevich, W.Kleinig, J.Mesa
Momentum distribution in heavy deformed nuclei: Role of effective mass
NUCLEAR STRUCTURE 238U; calculated proton states momentum distributions, role of deformation and effective mass. Self-consistent Skyrme-Hartree-Fock and Woods-Saxon models.
doi: 10.1103/PhysRevC.70.057304
Phys.Rev. C 69, 064321 (2004)
A.A.Raduta, A.Escuderos, A.Faessler, E.Moya de Guerra, P.Sarriguren
Two neutrino double-β decay in deformed nuclei with an angular momentum projected basis
RADIOACTIVITY 76Ge, 82Se, 148,150Nd, 154Sm, 160Gd, 232Th, 238U(2β-); calculated 2ν-accompanied 2β-decay Gamow-Teller amplitudes, strength distributions, T1/2. Proton-neutron quasiparticle RPA.
doi: 10.1103/PhysRevC.69.064321
Ann.Nucl.Energy 31, 323 (2004)
Y.Ronen
Indications of the validity of the liquid drop model for spontaneous fission half-lives
RADIOACTIVITY 230,232Th, 231Pa, 232,233,234,235,236,238U, 237Np, 236,238,239,240,241,242,244Pu, 241,243Am, 240,242,243,244,245,246,248,250Cm, 246,248,249,250,252,254,256Cf, 253,254,255Es, 246,248,250,252,254,255,256,257,258,259Fm, 259Md, 250,252,256,258No, 253,254,255,256,257,258,259,260,262Rf, 255,256,257,261,262Db, 259,260,263Sg, 261Bh(SF); analyzed spontaneous fission T1/2 relative to liquid drop model predictions.
doi: 10.1016/S0306-4549(03)00221-4
Phys.Rev. C 70, 044309 (2004)
M.Samyn, S.Goriely, M.Bender, J.M.Pearson
Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. III. Role of particle-number projection
NUCLEAR STRUCTURE Z=8-120; calculated masses. 230,231,233Th, 235,236,237,238,239U, 237,238Np, 235,237,238,239,240,241,243,244Pu, 239,240,241,242,243,244Am, 241,242,243,244,245Cm, 244Bk; analyzed shape isomer energies. 32S, 208Pb; calculated charge density distributions. Skyrme-Hartree-Fock-Bogoliubov mass formulas.
doi: 10.1103/PhysRevC.70.044309
Appl.Radiat.Isot. 60, 263 (2004)
R.Schon, G.Winkler, W.Kutschera
A critical review of experimental data for the half-lives of the uranium isotopes 238U and 235U
RADIOACTIVITY 235,238U(α), (SF); compiled, analyzed T1/2 data.
doi: 10.1016/j.apradiso.2003.11.027
Ukr.J.Phys. 49, 836 (2004)
Sh.Sharipov, M.S.Nadirbekov, S.K.Nuriyev
Reduced probabilities of E2 transitions and quadrupolar moments of the excited states of deformable nonaxial even-even nuclei
NUCLEAR STRUCTURE 104Ru, 166Er, 238U; calculated quadrupole moments, transitions B(E2). Comparison with data.
J.Phys.(London) G30, 905 (2004)
E.Sh.Sukhovitskii, S.Chiba, J.-Y.Lee, O.Iwamoto, T.Fukahori
Global coupled-channel optical potential for nucleon-actinide interaction from 1 keV to 200 MeV
NUCLEAR REACTIONS 232Th, 233,235,238U, 239,240,242Pu(n, X), E=0.1-200 MeV; calculated total σ, resonance parameters. 232Th, 238U(n, n), (n, n'), E=3.4-15 MeV; 232Th, 238U(p, p), (p, p'), E=20-65 MeV; calculated σ(θ). 232Th, 233,235,238U, 239,240,242Pu deduced deformation parameters. Global coupled-channel optical potential, comparison with data.
doi: 10.1088/0954-3899/30/7/007
J.Phys.(London) G31, S1813 (2005)
H.H.Alharbi, H.A.Alhendi, S.U.El-Kameesy
Nuclear structure study of some actinide nuclei
NUCLEAR STRUCTURE 238,242,244Pu, 230Th, 236,238U; calculated rotational bands moments of inertia. Exponential model with pairing attenuation, comparison with data.
doi: 10.1088/0954-3899/31/10/078
Phys.Rev. C 71, 024310 (2005)
R.J.Charity, L.G.Sobotka
Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation
NUCLEAR STRUCTURE 40Si, 40S, 40Ar, 40Ca, 40,60Ti, 60Cr, 60Fe, 60Ni, 60Zn, 60Ge, 150,160,170,180,190Yb, 170Nd, 170Hg, 238U; calculated level density parameters, deformation dependence, continuum corrections.
doi: 10.1103/PhysRevC.71.024310
Nucl.Phys. A758, 627c (2005)
P.Demetriou, M.Samyn, S.Goriely
Fission properties relevant to r-process nucleosynthesis
NUCLEAR REACTIONS 231Pa, 233,234,238U, 239Pu, 248Cm(n, F), E(cm)=0-5 MeV; calculated fission σ. Comparison with data.
RADIOACTIVITY 232,234,236,238,240U, 238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf(SF); calculated fission T1/2.
doi: 10.1016/j.nuclphysa.2005.05.113
Int.J.Mod.Phys. E14, 457 (2005)
A.Dobrowolski, J.Bartel, K.Pomorski
Influence of different proton and neutron deformations on nuclear energies
NUCLEAR STRUCTURE 232,238U, 240Pu, 270Hs, 272Ds; calculated energy vs deformation. Yukawa-folded model, shell corrections.
doi: 10.1142/S0218301305003272
Int.J.Mod.Phys. E14, 383 (2005)
J.Dudek, K.Mazurek, B.Nerlo-Pomorska
Search for the tri-axial hexadecapole-deformation effects in trans-actinide nuclei
NUCLEAR STRUCTURE 238U, 250,252Cf, 256,258Fm; calculated energy vs deformation, tri-axial hexadecapole-deformation effects. Macroscopic-microscopic method, comparison with Hartree-Fock-Bogoliubov approach.
doi: 10.1142/S0218301305003168
Phys.Rev. C 71, 014306 (2005)
J.Enders, P.von Neumann-Cosel, C.Rangacharyulu, A.Richter
Parameter-free description of orbital magnetic dipole strength
NUCLEAR STRUCTURE 46,48Ti, 50Cr, 56Fe, 66Zn, 92Zr, 94Mo, 108,112,114Cd, 122,124,126,130Te, 134,136Ba, 142Ce, 144,146,148,150Nd, 148,150,152,154Sm, 154,156,158,160Gd, 160,162,164Dy, 166,168,170Er, 172,174,176Yb, 176,178,180Hf, 182,184,186W, 190,192Os, 194,196Pt, 232Th, 236,238U; analyzed scissors mode excitation energies, deformation parameters, magnetic dipole strength distributions. Sum-rule approach.
doi: 10.1103/PhysRevC.71.014306
Phys.Rev. C 71, 024316 (2005)
H.Goutte, J.F.Berger, P.Casoli, D.Gogny
Microscopic approach of fission dynamics applied to fragment kinetic energy and mass distributions in 238U
NUCLEAR STRUCTURE 238U; calculated fission fragments kinetic energy and mass distributions, dynamical effects. Hartree-Fock-Bogoliubov and time-dependent generator coordinate methods.
doi: 10.1103/PhysRevC.71.024316
Phys.Rev. C 71, 024312 (2005)
G.A.Lalazissis, T.Niksic, D.Vretenar, P.Ring
New relativistic mean-field interaction with density-dependent meson-nucleon couplings
NUCLEAR STRUCTURE 12,14,16,18,20,22,24O, 40,48Ca, 72Ni, 90Zr, 116,124,132Sn, 190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 210Po, 224,226,228,230Ra, 228,230,232,234Th, 232,234,236,238,240U, 238,240,242,244,246Pu, 244,246,248,250Cm, 250,252,254Cf, 252,254,256Fm, 252,254,256No, 256Rf, 260Sg, 264Hs; calculated binding energies, radii. 116,118,120,124Sn, 208Pb; calculated giant resonance strength distributions. 287,288Mc, 283,284Nh, 279,280Rg, 275,276Mt, 271,272Bh; calculated Qα, deformation parameters. Relativistic mean-field effective interaction with density-dependent meson-nucleon couplings.
doi: 10.1103/PhysRevC.71.024312
Phys.Rev. C 71, 064328 (2005)
J.A.Maruhn, P.G.Reinhard, P.D.Stevenson, J.Rikovska Stone, M.R.Strayer
Dipole giant resonances in deformed heavy nuclei
NUCLEAR STRUCTURE 132Sn, 142,144,146,148,150Nd, 152Dy, 188Os, 238U; calculated dipole strength distributions, resonance features, deformation dependence. Time-dependent Skyrme-Hartree-Fock method.
doi: 10.1103/PhysRevC.71.064328
Phys.Rev. C 72, 064329 (2005)
H.Nakamura, T.Fukahori
Unified model of nuclear mass and level density formulas
NUCLEAR STRUCTURE 238U; calculated pairing, shell, and deformation energy corrections vs excitation energy. 55Mn, 60Co, 139La, 141Pr, 197Au, 209Po, 230,232Th, 238U; calculated level densities vs excitation energy. Analytical expression of the single-particle state density.
doi: 10.1103/PhysRevC.72.064329
Nucl.Phys. A747, 182 (2005)
D.N.Poenaru, R.A.Gherghescu, W.Greiner
Complex fission phenomena
NUCLEAR STRUCTURE 170Yb, 226,228,230,232,234,236,238Th, 230,232,234,236,238U, 252Cf; calculated saddle-point deformation parameters and energies for binary, ternary, and multicluster fission. Integro-differential equation.
doi: 10.1016/j.nuclphysa.2004.09.104
Nucl.Phys. A759, 64 (2005)
Z.Ren, C.Xu
Spontaneous fission half-lives of heavy nuclei in ground state and in isomeric state
RADIOACTIVITY 235,236m,238mU, 237mNp, 235m,236m,237m,238m,239,239m,240m,241m,242m,243m,244m,245mPu, 237m,238m,239m,240m,241,241m,242m,243,243m,244m,245m,246mAm, 241m,242m,243,243m,244m,245,245mCm, 242m,244m,245m,249Bk, 244,247,249Cf, 253,255Es, 251,253,255,257,259Fm, 245,247,260Md, 259,261Lr, 253,255,259Rf, 255,257,260,263Db, 261,263,265,267Sg, 263,265,267,269Bh, 269,271,273,275Ds, 271,273,275,277Rg(SF); calculated T1/2. Several formulas compared with data.
doi: 10.1016/j.nuclphysa.2005.04.019
Ukr.J.Phys. 50, 21 (2005)
Sh.Sharipov, M.S.Nadyrbekov
Electrical dipole and quadrupole transitions in even-even nuclei with quadrupole and octupole deformations
NUCLEAR STRUCTURE 104Ru, 166Er, 226Ra, 238U; calculated transitions B(E2), B(E1). Comparison with data.
Bull.Rus.Acad.Sci.Phys. 69, 141 (2005)
Sh.Sharipov, M.S.Nadyrbekov, S.K.Nuriev
Collective states of even-even nuclei with quadrupole and octupole deformations
NUCLEAR STRUCTURE 222,230Th, 238U; calculated level energies, J, π, collective features. 104Ru, 166Er, 226Ra, 238U; calculated reduced transition probabilities.
Phys.Rev. C 71, 047301 (2005)
W.J.Swiatecki, A.Trzcinska, J.Jastrzebski
Difference of the root-mean-square sizes of neutron and proton distributions in nuclei: Comparison of theory with data
NUCLEAR STRUCTURE 40,48Ca, 54,56,57Fe, 58,60,64Ni, 59Co, 90,96Zr, 106,116Cd, 112,116,120,124Sn, 122,124,126,128Te, 208Pb, 209Bi, 232Th, 238U; calculated neutron-proton radius difference. Droplet model, comparison with data.
doi: 10.1103/PhysRevC.71.047301
Europhys.Lett. 69, 41 (2005)
V.I.Tretyak, F.A.Danevich, S.S.Nagorny, Yu.G.Zdesenko
On the possibility to search for 2β decay of initially unstable (α/β radioactive) nuclei
RADIOACTIVITY 210Pb, 222Rn, 226Ra, 232,234Th, 238U(2β-); measured 2β-decay T1/2 lower limits.
doi: 10.1209/epl/i2004-10319-x
Phys.Rev. C 71, 014309 (2005)
C.Xu, Z.Ren
Systematical law of spontaneous fission half-lives of heavy nuclei
RADIOACTIVITY 232Th, 234,236,238U, 236,238,240,242,244Pu, 240,242,244,246,248,250Cm, 238,240,242,246,248,250,252,254,256Cf, 244,246,248,250,252,254,256,258,260Fm, 250,252,254,256,258,260,262No, 256,258,260,262,264Rf, 264,266,268,270,272Hs, 260,262,264,266,268Sg, 268,270,272,274,276Ds(SF); calculated fission T1/2. Comparisons with data.
doi: 10.1103/PhysRevC.71.014309
Nucl.Instrum.Methods Phys.Res. A555, 386 (2005); Erratum Nucl.Instrum.Methods Phys.Res. A557, 689 (2006)
T.Yoshioka, T.Tsuruta, H.Iwano, T.Danhara
Spontaneous fission decay constant of 238U determined by SSNTD method using CR-39 and DAP plates
RADIOACTIVITY 238U(SF); measured spontaneous fission decay constant. Solid-state nuclear track detectors.
doi: 10.1016/j.nima.2005.09.014
Proc.Intern.Conf.Nuclear Data for Science and Technology, Santa Fe, New Mexico, 26 September-1 October, 2004, R.C.Haight, M.B.Chadwick, T.Kawano, P.Talou, Eds., Vol.1, p. 153 (2005); AIP Conf.Proc. 769 (2005)
H.Yu, C.Cai, Z.Zhao
Calculations of Neutron- and Proton-Induced Reactions up to 200 MeV for Target 238U
NUCLEAR REACTIONS 238U(n, X), (n, F), (p, X), (p, F), E=0-200 MeV; calculated total and fission σ. 238U(n, n), E=0.55-14.1 MeV; 238U(p, p), E=20, 26, 65 MeV; calculated elastic σ(θ). 238U(n, F), E=14 MeV; calculated fission neutron spectra, yields. Comparison with data.
doi: 10.1063/1.1944979
Int.J.Mod.Phys. E14, 147 (2005)
N.V.Zamfir, D.Kusnezov, M.Babilon
Octupole correlations in Z or N ∼ 88 nuclei
NUCLEAR STRUCTURE 218,220,222Rn, 218,220,222,224,226Ra, 220,222,224,226,228,230,232Th, 230,232,234,236,238U, 238,240,242,244Pu, 148,150,152,154Sm; calculated levels, J, π, octupole excitations. Interacting boson approximation.
doi: 10.1142/S0218301305002874
Czech.J.Phys. 56, 437 (2006)
A.S.Barabash
Average and recommended half-life values for two-neutrino double-beta decay: Upgrade '05
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 150Nd, 238U(2β-); 130Ba(2EC); compiled, analyzed 2νββ-decay T1/2. Recommended values.
doi: 10.1007/s10582-006-0106-6
nucl-ex/0602009, 2/8/2006 (2006)
A.S.Barabash
Average and recommended half-life values for two neutrino double beta decay: Upgrade '05
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 150Nd, 238U(2β-); 130Ba(2EC); compiled, analyzed 2νββ-decay T1/2.
Phys.Rev. C 73, 014315 (2006)
D.S.Delion, S.Peltonen, J.Suhonen
Systematics of the α-decay to rotational states
RADIOACTIVITY 226,228,230,232,234Th, 230,232,234,236,238U, 236,238,240,242,244Pu, 242,244,246,248Cm, 248,250Cf(α); analyzed T1/2, decay widths for α-decay to rotational states; deduced parameters. Stationary coupled channels approach.
doi: 10.1103/PhysRevC.73.014315
Phys.Rev. C 73, 054309 (2006)
A.S.de Castro, P.Alberto, R.Lisboa, M.Malheiro
Relating pseudospin and spin symmetries through charge conjugation and chiral transformations: The case of the relativistic harmonic oscillator
doi: 10.1103/PhysRevC.73.054309
Can.J.Phys. 84, 677 (2006)
J.B.French, S.Rab, J.F.Smith, R.U.Haq, V.K.B.Kota
Nuclear spectroscopy in the chaotic domain: level densities
NUCLEAR STRUCTURE 150,153,155Sm, 155,156,157,158,159Gd, 162Dy, 167,168,169Er, 170,171,172,173,174,175Yb, 175,178,179,180Hf, 181W, 207Pb, 233,234,235,236,237,238,239U, 233Th; analyzed resonance energies, J, π, configurations, level density parameters.
doi: 10.1139/P06-047
Int.J.Mod.Phys. E15, 292 (2006)
H.Goutte, J.-F.Berger, D.Gogny
Fission collective dynamics in a microscopic framework
NUCLEAR STRUCTURE 238U; calculated potential energy along scission line, fission fragments kinetic energies, charge and mass distributions, deformation. Time-dependent microscopic approach.
doi: 10.1142/S0218301306004120
Phys.Rev.C 74, 064306 (2006)
V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard, D.S.Dolci
Self-consistent separable random-phase approximation for Skyrme forces: Giant resonances in axial nuclei
NUCLEAR STRUCTURE 154Sm, 238U, 254No; calculated GDR and GQR strength distributions, related features. Self-consistent separable RPA.
doi: 10.1103/PhysRevC.74.064306
Bull.Rus.Acad.Sci.Phys. 70, 824 (2006)
G.K.Nie
Alpha cluster model based on pn-pair interactions
NUCLEAR STRUCTURE 116Sn, 122Sb, 126Te, 133Cs, 136Xe, 138Ba, 139La, 140Ce, 141Pr, 142Nd, 148Sm, 153Eu, 156Gd, 158Dy, 160Er, 162Yb, 176Hf, 190Os, 197Au, 204Hg, 205Tl, 208Pb, 209Bi, 232Th, 238U; calculated radii. Spherical lattice model.
Phys.Rev. C 74, 044312 (2006)
A.A.Raduta, Al.H.Raduta, C.M.Raduta
Simultaneous description of four positive parity bands and four negative parity bands
NUCLEAR STRUCTURE 158Gd, 172Yb, 228,232Th, 226Ra, 238U, 238Pu; calculated rotational bands energies, moments of inertia, configurations. Comparison with data.
doi: 10.1103/PhysRevC.74.044312
Int.J. Mass Spectrom. 251, 109 (2006)
V.M.Shabaev, O.V.Andreev, A.N.Artemyev, S.S.Baturin, A.A.Elizarov, Y.S.Kozhedub, N.S.Oreshkina, I.I.Tupitsyn, V.A.Yerokhin, O.M.Zherebtsov
QED effects in heavy few-electron ions
NUCLEAR MOMENTS 203,205Tl, 209Bi, 238U; calculated hydrogen-like ion hyperfine splitting (hfs), hydrogen-like, lithium-like, and helium-like ion binding energies, bound electron g-factor, and parity nonconservation (PNC) effects. Calculations include relativistic quantum electrodynamics (QED), electron-correlation, and nuclear effects.
doi: 10.1016/j.ijms.2006.01.012
Nucl.Phys. A778, 1 (2006)
C.Xu, Z.Ren
Branching ratios of α-decay to excited states of even-even nuclei
RADIOACTIVITY 180,182,184Hg, 186,188Pb, 190,194,196,198Po, 202Rn, 226,228,230,232Th, 230,232,234,236U, 236,238,240,242Pu, 242,244Cm, 246Cf(α); calculated branching ratios for decays to excited states. Comparisons with data.
doi: 10.1016/j.nuclphysa.2006.08.002
Phys.Atomic Nuclei 70, 1350 (2007)
G.G.Adamian, N.V.Antonenko, R.V.Jolos, Yu.V.Palchikov, T.M.Shneidman, W.Scheid
Nuclear structure in the dinuclear model with rotating clusters
NUCLEAR STRUCTURE 238U; calculated level energies, J, π using the dinuclear-system model.
doi: 10.1134/S1063778807080054
Int.J.Mod.Phys. E16, 459 (2007)
J.Bartel, A.Dobrowolski, K.Pomorski
Saddle-point masses of even-even actinide nuclei
NUCLEAR STRUCTURE 232,234Th, 234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250Cf; calculated fission barrier energies, inner and outer saddle point masses. Modified funny-hills shape parameterization.
doi: 10.1142/S0218301307005892
Phys.Rev. C 76, 064312 (2007)
D.Bonatsos, E.A.McCutchan, N.Minkov, R.F.Casten, P.Yotov, D.Lenis, D.Petrellis, I.Yigitoglu
Exactly separable version of the Bohr Hamiltonian with the Davidson potential
NUCLEAR STRUCTURE 154Sm, 156,158,160,162Gd, 158,160,162,164,166Dy, 160,162,164,166,168,170Er, 164,166,168,170,172,174,176,178Yb, 168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 180,182,184,186,188Os, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf; calculated excitation energy ratios, angular momenta, B(E2) ratios, bandhead energies, deformation parameters using Bohr Hamiltonian with Davidson Potential, compared with experimental values.
doi: 10.1103/PhysRevC.76.064312
J.Phys.(London) G34, 1985 (2007)
B.Buck, A.C.Merchant, S.M.Perez
Negative parity bands in 238U
NUCLEAR STRUCTURE 238U; calculated level energies, K, J, π in terms of a Pb-Ne cluster model.
doi: 10.1088/0954-3899/34/9/010
Phys.Rev. C 75, 024613 (2007)
A.Dobrowolski, K.Pomorski, J.Bartel
Fission barriers in a macroscopic-microscopic model
NUCLEAR STRUCTURE 232,234Th, 236,238U, 236,240Pu, 272Ds, 298Fl; calculated fission barriers. Macroscopic-microscopic model, four-dimensional shape parameterization.
doi: 10.1103/PhysRevC.75.024613
Int.J.Mod.Phys. E16, 431 (2007)
A.Dobrowolski, H.Goutte, J.-F.Berger
Microscopic determinations of fission barriers (mean-field and beyond)
NUCLEAR STRUCTURE 226Th, 238U; calculated potential energy vs deformation, fission barrier features.
doi: 10.1142/S0218301307005867
Eur.Phys.J. A 33, 65 (2007)
O.N.Ghodsi, J.Ariai
Calculation of the Coulomb potential between spherical-deformed and deformed-deformed nuclei using the Monte Carlo method
NUCLEAR STRUCTURE 16O, 27Al, 70Ge, 238U; calculated deformations parameters using HFB model.
NUCLEAR REACTIONS 238U(16O, X), E not given; 70Ge(27Al, X), E not given; calculated coulomb potentials using Monte Carlo simulations.
doi: 10.1140/epja/i2007-10412-8
Int.J.Mod.Phys. E16, 624 (2007)
V.O.Nesterenko, W.Kleinig, J.Kvasil, P.Vesely, P.-G.Reinhard
Giant dipole resonance in deformed nuclei: dependence on Skyrme forces
NUCLEAR STRUCTURE 150Nd, 238U; calculated GDR strength distributions. Separable RPA method, four Skyrme forces compared.
doi: 10.1142/S0218301307006071
J.Phys.(London) G35, 065109 (2008)
A.Bhagwat, Y.K.Gambhir
The α-nucleus potential for fusion and decay
RADIOACTIVITY 238U, 225Pa, 271Ds(α); calculated α-decay half-lives.
NUCLEAR REACTIONS 206,208Pb, 209Bi(α, X), E=16-21 MeV; calculated fusion cross sections.
doi: 10.1088/0954-3899/35/6/065109
J.Phys.(London) G35, 085101 (2008)
B.Buck, A.C.Merchant, S.M.Perez
Negative parity bands in even-even isotopes of Ra, Th, U and Pu
NUCLEAR STRUCTURE 226Ra, 230Th, 234,236,238U, 238,240,242Pu; calculated level energies and B(E3) for negative parity bands using a Pb core plus exotic cluster model.
doi: 10.1088/0954-3899/35/8/085101
Phys.Rev. C 77, 061305 (2008)
Y.-S.Chen, Y.Sun, Z.-C.Gao
Nonaxial-octupole effect in superheavy nuclei
NUCLEAR STRUCTURE 220,222,224,226,228,230Ra, 224,226,228,230,232Th, 230,232,234,236,238U, 236,238,240,242Pu, 246,248Cm, 248,250,252Cf, 250Fm, 252No; calculated band head energies, comparison with experimental data. 246Cm, 248Cf, 250Fm, 252No; calculated levels, J, π, B(E3). Reflection Asymmetric Shell Model.
doi: 10.1103/PhysRevC.77.061305
Phys.Lett. B 670, 200 (2008)
A.R.Junghans, G.Rusev, R.Schwengner, A.Wagner, E.Grosse
Photon data shed new light upon the GDR spreading width in heavy nuclei
NUCLEAR STRUCTURE 88Sr, 94,98Mo, 156Gd, 190Os, 196Pt, 200Hg, 238U; analyzed dipole strength functions.
doi: 10.1016/j.physletb.2008.10.055
Phys.Rev. C 78, 044313 (2008)
W.Kleinig, V.O.Nesterenko, J.Kvasil, P.-G.Reinhard, P.Vesely
Description of the dipole giant resonance in heavy and superheavy nuclei within Skyrme random-phase approximation
NUCLEAR STRUCTURE 156,160Gd, 166,168Er, 176,178,180Hf, 182,184,186W, 170,172,174,176Yb, 186,188,190,192Os, 232Th, 234,236,238U, 242,248,254,262,270No, 264,274,284,294,304Fl, 280,288,294,304,312120; calculated isovector giant dipole resonance strengths, energies and widths. Skyrme random-phase approximation. Comparison with experimental data.
doi: 10.1103/PhysRevC.78.044313
Nucl.Phys. A801, 43 (2008)
X.Li, C.Cai
Global dispersive optical model potential for proton as projectile in the energy region up to 200 MeV
NUCLEAR REACTIONS 24,26Mg, 27Al, 28Si, 31P, 40Ar, 40,42,44,48Ca, 45Sc, 46,48,50Ti, 51V, 50,52Cr, 55Mn, 54,56,57,58Fe, 59Co, 58,60,62,64Ni, 63,65Cu, 64,66,68,70Zn, 70Ge, 74,76,78,80,82Se, 86,88Sr, 89Y, 90,91,92,94,96Zr, 92,94,96,98,100Mo, 102Ru, 104,106,108,110Pd, 106,108,110,111,112,113,114,116Cd, 116,120,124Sn, 134,136,138Ba, 144Nd, 144,148,150,152,154Sm, 160Gd, 164Dy, 165Ho, 166,168Er, 172,174,176Yb, 178,180Hf, 182,184,186W, 188,190,192Os, 194,198Pt, 197Au, 206,207,208Pb, 209Bi, 232Th, 235,238U(p, p), E≈1-200 MeV; calculated σ(θ). 112,114,116,118,120,122,124Sn(p, p'), E=0-200 MeV; calculated nonelastic σ. New global proton dispersive optical model parameters. Comparison with Koning and Delaroche potential.
doi: 10.1016/j.nuclphysa.2007.12.004
J.Radioanal.Nucl.Chem. 277, 207 (2008)
S.Pomme, E.Garcia-Torano, G.Sibbens, S.Richter, R.Wellum, A.Stolarz, A.Alonso
234U/235U activity ratios as a probe for the 238U/235U half-life ratio
RADIOACTIVITY 234,235U(α); measured Eα, Iα. 235,238U; deduced half-life ratio.
doi: 10.1007/s10967-008-0731-6
Int.J.Mod.Phys. E17, 160 (2008)
L.Prochniak
Collective excitations of transactinide nuclei in a self-consistent mean field theory
NUCLEAR STRUCTURE 238U, 240,242Pu, 246,248Cm, 250,252Cf; calculated potential energy surfaces, mass parameter, probability distributions, level energies, and B(E2) using the Adiabatic Time Dependent Hartree-Fock-Bogolyubov (ATDHFB) approach. Comparisons with experimental results.
doi: 10.1142/S0218301308009653
Proc.of the 9th Internat. Spring Seminar on Nuclear Physics: Changing Facets of Nuclear Structure, Vico Equense, Italy, May 20-24 2007, A.Covello, Ed., World Scientific, Singapore, p.209 (2008)
A.A.Raduta, C.M.Raduta
Double beta decay to the first 2+ state
NUCLEAR STRUCTURE 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 104Ru, 110Pd, 116Cd, 128,130Te, 134,136Xe, 148,150Nd, 154Sm, 160Gd, 232Th, 238U; calculated Gamow-Teller transition amplitudes, ββ-decay T1/2.
Nucl.Sci.Eng. 160, 190 (2008)
P.Santi, M.Miller
Reevaluation of Prompt Neutron Emission Multiplicity Distributions for Spontaneous Fission
RADIOACTIVITY 232Th, 236,238U, 236,238,240,242,244Pu, 242,244,246,248,250Cm, 249Bk, 246,249,250,252,254Cf, 253Es, 244,246,254,256,257Fm, 252No(SF); analyzed prompt neutron emission probabilities.
Ukr.J.Phys. 53, 112 (2008)
Sh.Sharipov, M.S.Nadirbekov, G.A.Yuldasheva
Excited rotational-vibrational states of even-even nuclei with quadrupole and octupole deformations
NUCLEAR STRUCTURE 150Sm, 154,162Dy, 232Th, 232,236,238U; calculated level energies for excited rotational-vibrational states with quadrupole and octupole deformations.
Int.J.Mod.Phys. E17, 151 (2008)
J.Skalski
Relative motion correction to fission barriers
NUCLEAR STRUCTURE 198Hg, 238U; calculated fission barrier features. Hartree-Fock approach.
doi: 10.1142/S0218301308009641
Phys.Rev. C 77, 035806 (2008), Erratum Phys.Rev. C 81, 049902 (2010)
H.Sonoda, G.Watanabe, K.Sato, K.Yasuoka, T.Ebisuzaki
Phase diagram of nuclear "pasta" and its uncertainties in supernova cores
NUCLEAR STRUCTURE 56Fe, 90Zr, 208Pb, 238U; calculated binding energies, central nucleon density, surface diffusiveness parameters, surface tension, nucleon distributions, phase diagrams. Quantum-molecular dynamics (QMD) model.
doi: 10.1103/PhysRevC.77.035806
Ann.Nucl.Energy 35, 220 (2008)
E.Tel, H.M.Sahin, A.Kaplan, A.Aydin, T.Altinok
Investigation of the properties of the nuclei used on the new generation reactor technology systems
NUCLEAR STRUCTURE 184W, 207Pb, 209Bi, 232Th, 238U; calculated RMS charge and mass radius, neutron and proton densities using the Hartree Fock method with Skyrme interaction.
doi: 10.1016/j.anucene.2007.06.012
Phys.Rev. C 77, 034312 (2008)
Q.N.Usmani, A.R.Bodmer, Z.Sauli
Core nucleus polarization in Λ hypernuclei
NUCLEAR STRUCTURE 3,4H, 4,5He; calculated binding energies. 10B, 11,12C, 15,16,18O, 20Ne, 23Na, 27,28Si, 31,32S, 39,40,42,44,48Ca, 50,51V, 58Ni, 88,89Y, 91Y, 100Mo, 122Sn, 138,139La, 150Nd, 169Tm, 174Yb, 198Hg, 207,208,210Pb, 238U, 243Am; calculated single particle energies, rms radii, wave functions for hypernuclei.
doi: 10.1103/PhysRevC.77.034312
Phys.Rev. C 80, 034317 (2009)
S.K.Arun, R.K.Gupta, S.Kanwar, B.Singh, M.K.Sharma
Cluster radioactivity with effects of deformations and orientations of nuclei included
RADIOACTIVITY 114Ba(12C), 221Fr, 221,222,223,224,226Ra, 223,225Ac, 226Th(14C), 223Ac(15N), 226Th(18O), 228Th(20O), 230U(22Ne), 230,232,233,234U, 230Th, 231Pa(24Ne), 231Pa(23F), 234U(25Ne), 234U(26Ne), 232,233,234,235,236U, 236,238Pu(28Mg), 237Np, 238Pu(30Mg), 238Pu(32Si), 238U, 241Am, 242Cm(34Si), 252Cf(46Ar), (48Ca), (50Ca); calculated half-lives of cluster decays for different deformations using preformed cluster model (PCM). Comparison with experimental data.
doi: 10.1103/PhysRevC.80.034317
J.Phys.(London) G36, 085101 (2009)
B.Buck, A.C.Merchant, S.M.Perez, T.T.Ibrahim, S.M.Wyngaardt
Electromagnetic transition strength ratios in 238U
NUCLEAR STRUCTURE 238U; calculated B(E1), B(E2), B(E1)/B(E2). Pb-Ne cluster model, comparison with experiment.
doi: 10.1088/0954-3899/36/8/085101
Phys.Rev. C 80, 034603 (2009); Erratum Phys.Rev. C 82, 059902 (2010)
V.Yu.Denisov, A.A.Khudenko
α decays to ground and excited states of heavy deformed nuclei
RADIOACTIVITY 222,224,226Ra, 226,228,230,232Th, 228,230,232,234,235,236,238U, 234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 244,246,248,250,252Cf, 248,250,252Fm, 252No(α); calculated half-lives and branching ratios for g.s. to g.s. decays and g.s. to excited states using Unified model for α decay and α capture (UMADAC). Comparison with experimental data.
doi: 10.1103/PhysRevC.80.034603
Phys.Rev. C 79, 024612 (2009)
S.Goriely, S.Hilaire, A.J.Koning, M.Sin, R.Capote
Towards a prediction of fission cross sections on the basis of microscopic nuclear inputs
NUCLEAR REACTIONS 232Th, 235,236,238U, 238,239,240,241,242Pu, 237Np(n, F), E=0.01-30 MeV; calculated fission σ using global renormalization of barrier heights within the HFB fission path and microscopic nuclear level densities at saddle points. Comparison with experimental data. 234,235,236,237,238,239U, 238,239,240,241,242,243Pu; calculated fission path total energy.
doi: 10.1103/PhysRevC.79.024612
J.Nucl.Sci.Technol.(Tokyo) 46, 914 (2009)
S.Kunieda, S.Chiba, K.Shibata, A.Ichihara, O.Iwamoto, N.Iwamoto, T.Fukahori, E.Sh.Sukhovitskii
Extensive Study of the Soft-Rotator Model Hamiltonian Parameters for Medium and Heavy Even-Even Nuclei
NUCLEAR STRUCTURE 56,58Fe, 60,62,64Ni, 64,66,68,70Zn, 70,72,74,76Ge, 74,76,78,80,82Se, 86Sr, 96,98,100Mo, 102Ru, 104,106,108,110Pd, 106,108,110,112,114,116Cd, 116,118,120,122,124Sn, 122,124,126,128,130Te, 144,150Nd, 148,150,152,154Sm, 160Gd, 164Dy, 166,168Er, 174,176Yb, 178,180Hf, 182,184W, 192Os, 194Pt, 232Th, 238U; calculated excitation energy levels, J, π, quadrupole deformation parameters, B(E2), B(E3); deduced shell structure effects, agreement with mass-model results. Comparison with experimental results, SRM-CC analysis.
NUCLEAR REACTIONS 56,58Fe, 60,62,64Ni, 64,66,68,70Zn, 70,72,74,76Ge, 74,76,78,80,82Se, 86Sr, 96,98,100Mo, 102Ru, 104,106,108,110Pd, 106,108,110,112,114,116Cd, 116,118,120,122,124Sn, 122,124,126,128,130Te, 144,150Nd, 148,150,152,154Sm, 160Gd, 164Dy, 166,168Er, 174,176Yb, 178,180Hf, 182,184W, 192Os, 194Pt, 232Th, 238U(p, p'), E = 22.3, 65 MeV; calculated inelastic proton σ(θ). Coupled-channel optical model analysis.
doi: 10.3327/jnst.46.914
Nucl.Phys. A825, 145 (2009)
D.Ni, Z.Ren
Microscopic calculation of α-decay half-lives within the cluster model
RADIOACTIVITY 210Pb, 212,214,216,218Po, 214,216,218,220,222Rn, 216,218,220,222,224,226Ra, 218,220,222,224,226,228,230,232Th, 222,224,226,228,230,232,234,236,238U, 232,234,236,238,240,242,244Pu, 240,242,244,246,248Cm, 240,242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256No, 256,258Rf, 260,266Sg, 264,266,270Hs, 270Ds, 278,279,280Rg, 283,284,285Cn, 282,283,284Nh, 286,287,288,289Fl, 287,288Mc, 290,291,292,293Lv, 294Og(α); calculated α-decay half-lives using a cluster model. Comparison with data.
doi: 10.1016/j.nuclphysa.2009.04.010
Phys.Rev. C 80, 064602 (2009)
S.K.Patra, R.N.Panda, P.Arumugam, R.K.Gupta
Nuclear reaction cross sections of exotic nuclei in the Glauber model for relativistic mean field densities
NUCLEAR REACTIONS 12C(6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), E=790 MeV/nucleon; 12C(20Mg, X), (20Na, X), (20Ne, X), (20F, X), (20O, X), (20N, X), E=30-2200 MeV/nucleon; 208Pb(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), (10B, X), E=30-1000 MeV/nucleon; 235U(α, X), (6He, X), (8He, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), (20C, X), E=30-1000 MeV/nucleon; 230Th(α, X), (6Li, X), (7Li, X), (8Li, X), (9Li, X), (11Li, X), E=30-1000 MeV/nucleon; 218,228,248,260Pb, 250,260,270U(6Li, X), E=30-1000 MeV/nucleon; 218,228,248,260Pb, 250,260,270U(11Li, X), 30-1000 MeV/nucleon; 218,228,248Pb(10B, X), E=30-1000 MeV/nucleon; 240,250,270Th(α, X), E=30-1000 MeV/nucleon; 250,260,270U(8He, X), E=30-1000 MeV/nucleon; 250,260,270U(20C, X), E=30-1000 MeV/nucleon; 208,210,260Pb(6Li, 6Li), E=30-1000 MeV/nucleon; 260Pb, 292,320122(11Li, X), E=30-1000 MeV/nucleon; 260Pb, 292,320122(11Li, 11Li), E=30-1000 MeV/nucleon; 208Pb, 235,238,250U(12C, 12C), E=30-1000 MeV/nucleon; 235,238,250U(20C, 20C), E=30-1000 MeV/nucleon; calculated σ and σ(θ) using the relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms and the Glauber model. Comparison with experimental data.
NUCLEAR STRUCTURE 4,5,6,7,8He, 6,7,8,9,10,11Li, 10,15,17,20B, 12,14,16,18,20C, 208,210,218,228,238,248,258,260Pb, 230,240,250,260,270Th, 235,238,250,260,270,280U, 292,320122; calculated binding energies, rms radii and ground-state densities for lighter projectiles and heavier target nuclei using relativistic mean field (RMF(NL3) and E-RMF(G2)) formalisms. Comparison with experimental data.
doi: 10.1103/PhysRevC.80.064602
Eur.Phys.J. A 41, 399 (2009)
K.Rusek
Polarization potentials due to inelastic excitations
NUCLEAR REACTIONS 238U(α, α), E=24.7 MeV; 208Pb(6He, 6He), E=22 MeV; 208Pb(7Li, 7Li), E=33 MeV; calculated σ(θ) comparing optical model and coupled-channels methods with data and the effect of using a dynamic polarization potential.
doi: 10.1140/epja/i2009-10838-x
Int.J.Mod.Phys. E18, 869 (2009)
A.Sobiczewski, M.Kowal
Description of experimental fission barriers of heavy nuclei
NUCLEAR STRUCTURE 232,234,236,238,240U, 232,234,236,238,240,242,244,246Pu, 242,246,248,250Cm, 250,252Cf, 260,262,264,266,268,270,272,274,276,278,280,282,284,286,288,290,292,294,296Ds; calculated fission barriers, compared to other calculations and experiment.
doi: 10.1142/S0218301309012975
Phys.Rev. C 80, 031302 (2009)
P.Vesely, J.Kvasil, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, V.Yu.Ponomarev
Skyrme random-phase-approximation description of spin-flip M1 giant resonance
NUCLEAR STRUCTURE 48Ca, 158Gd, 208Pb, 238U; calculated spin-flip M1 giant resonance energies and strength distributions using random-phase approximation (RPA) calculations and Skyrme energy functionals with a set of eight Skyrme parametrizations. Comparison with experimental data.
doi: 10.1103/PhysRevC.80.031302
Phys.Rev. C 79, 014316 (2009)
Y.Z.Wang, H.F.Zhang, J.M.Dong, G.Royer
Branching ratios of α decay to excited states of even-even nuclei
RADIOACTIVITY 180,182,184Hg(α), 186,188Pb(α), 190,194,196,198Po(α), 202Rn(α), 226,228,230,232Th(α), 230,232,234,236U(α), 236,238,240,242Pu(α), 242,244Cm(α), 246Cf(α); calculated branching ratios for decays to ground excited states in the framework of generalized liquid-drop model. Comparison with experimental data.
doi: 10.1103/PhysRevC.79.014316
Nucl.Phys. A839, 1 (2010)
A.Y.Abul-Magd, S.A.Mazen, M.Abdel-Mageed, A.Al-Sayed
Identification of nuclei exhibiting the SU(3) dynamical symmetry
NUCLEAR STRUCTURE 152Nd, 154,156Sm, 158,160,162Gd, 160,162,164,166Dy, 164,166,168,170Er, 168,170,172,178Yb, 174,176,178,180Hf, 180,182,184W, 230,232Th, 232,234,238U, 238,240,242Pu, 244,246,248Cm, 250Cf, 256Fm; calculated energy levels, J, π, B(E2), related features for 2+ states using interactive boson model.
doi: 10.1016/j.nuclphysa.2010.03.007
Phys.Rev. C 82, 044303 (2010)
H.Abusara, A.V.Afanasjev, P.Ring
Fission barriers in actinides in covariant density functional theory: The role of triaxiality
NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated β2- and γ-deformation energy curves, potential energy surfaces, proton and neutron single-particle energies as a function of β2 and γ parameter, fission barriers as a function of proton and neutron number using relativistic mean-field theory and covariant density functional theory. Comparison with experimental data.
doi: 10.1103/PhysRevC.82.044303
Phys.Rev. C 81, 035501 (2010)
A.S.Barabash
Precise half-life values for two-neutrino double-β decay
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 116Cd, 128,130Te, 150Nd, 238U(2β-); 130Ba(2EC); analyzed and recommended half-lives for double beta decays; deduced nuclear matrix elements. Reviewed experimental data.
doi: 10.1103/PhysRevC.81.035501
J.Phys.:Conf.Ser. 205, 012020 (2010)
D.Bonatsos, I.Boztosun, I.Inci
A long sought result: Closed analytical solutions of the Bohr Hamiltonian with the Morse potential
NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108,110,112,114,116Pd, 106,108,110,112,114,116,118,120Cd, 118,120,122,124,126,128,130,132,134Xe, 130,132,134,136,142Ba, 134,136,138Ce, 140,148,150Nd, 140,142,152,154Sm, 142,144,152,154,156,158,160,162Gd, 158,160,162,164,166Dy, 156,160,162,164,166,168,170Er, 164,166,168,170,172,174,176,178Yb, 168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 178,180,184,186,188Os, 186,188,190,192,194,196,198,200Pt, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242,248Cm, 250Cf; calculated low-lying 0+, 2+, 4+ states, β and γ bandheads, deformation using Bohr Hamiltonian with Morse potential; deduced Morse potential shapes. Compared with data.
doi: 10.1088/1742-6596/205/1/012020
Phys.Rev. C 81, 034322 (2010)
B.Buck, A.C.Merchant, S.M.Perez
Theory of recursive nuclear band spectra
NUCLEAR STRUCTURE 102,104,106Mo, 102,104,106,110,112Ru, 102,110,114,116Pd, 140Xe, 144,146Ba, 146,148Ce, 148,150,152Nd, 150,152,154Sm, 152,154,156,158,160Gd, 154,156,158,160,162,164Dy, 156,158,160,162,164,166,168,170Er, 158,160,162,164,166,168,170,172,174,176Yb, 164,166,168,170,172,174,176,178,180Hf, 168,170,172,174,180,182,186W, 172,174,180,182,184,186,188,192Os, 176,180,184,186,188Pt, 222,224,226Ra, 222,226,228,230,232,234Th, 230,232,234,236,238U, 238,240,242,244Pu, 248Cm; analyzed nuclear band spectra using recursion formula based on a quantum mechanical model.
doi: 10.1103/PhysRevC.81.034322
Phys.Rev. C 81, 024616 (2010)
Y.Han, Y.Xu, H.Liang, H.Guo, Q.Shen
Global phenomenological optical model potential for nucleon-actinide reactions at energies up to 300 MeV
NUCLEAR REACTIONS 232Th, 233,235,238U, 237Np, 239,240,242Pu, 241Am(n, X), E=0.01-300 MeV; calculated total σ. 235,238U(n, n), E=0.01-300 MeV; calculated σ. 232Th, 235,238U, 239Pu(n, n'), E=0.1-300 MeV; calculated non-inelastic σ. 232Th, 235,238U, 239Pu(n, n), (n, n'), E=0.14-15.2 MeV; 238U(n, n), E=96 MeV; calculated σ(θ) for elastic σ, inelastic σ and elastic+inelastic σ. 232Th, 238U(p, X), E=0-300 MeV; calculated σ. 232Th, 235,238U(p, p), (p, p'), E=16-95 MeV; calculated σ(θ). global phenomenological optical model potential. Deduced of neutron and proton global optical model potential parameters. Comparison and analysis with experimental data.
doi: 10.1103/PhysRevC.81.024616
Phys.Rev. C 82, 054303 (2010)
M.Kowal, J.Skalski
Low-energy shape oscillations of negative parity in the main and shape-isomeric minima in actinides
NUCLEAR STRUCTURE 240Pu; calculated fission barrier and cranking mass contour plots as function of various deformation parameters. 230,232,234,236Th, 230,232,234,236,238,240U, 234,236,238,240,242,244,246Pu, 234,236,238,240,242,244,246,250Cm, 238,240,242,244,246,248,250,252,254Cf; calculated stiffness coefficients at the first and second minima, energies of negative-parity shape oscillations in the first and second minima for K=0, 1 and 2, and transition electric dipole (E1) moments. Single-particle Hamiltonian with the deformed Woods-Saxon potential defined in terms of the nuclear surface and variety of shape deformations. Comparison with experimental data.
doi: 10.1103/PhysRevC.82.054303
Eur.Phys.J. A 43, 313 (2010)
A.A.Kuliev, E.Guliyev, F.Ertugral, S.Ozkan
The low-energy dipole structure of 232Th, 236U and 238U actinide nuclei
NUCLEAR STRUCTURE 232Th, 236,238U; calculated B(M1), B(E1) strength distributions, transition widths, level energies; deduced scissors mode features. Quasiparticle RPA. Comparison with data.
doi: 10.1140/epja/i2010-10933-y
Phys.Rev. C 82, 024311 (2010)
D.Ni, Z.Ren
Half-lives and cluster preformation factors for various cluster emissions in trans-lead nuclei
RADIOACTIVITY 210Pb, 211Bi, 211,212,213,214Po(α); 219,220Rn, 221Fr, 221,222,223,224,225,226Ra, 223,225Ac, 226Th(14C); 221Fr, 223Ac(15N); 223Ra, 226,227Th, 227Pa(18O); 225,226Ra, 227Ac, 228,229Th(20O); 228Th, 229Pa, 230U, 231Np(22Ne); 229Ac, 231Pa(23F); 229,230,231,232Th, 231Pa, 230,232,233,234,235,236U, 233Np(24Ne); 231Th, 233,235U(25Ne); 232Th, 234,236U(26Ne); 232,233,234,235,236U, 235Np, 236,237,238Pu, 237Am(28Mg); 235U, 237Pu(29Mg); 236,238U, 237Np, 238,239Pu(30Mg); 237,238Pu, 239Am, 240,241Cm(32Si); 239Pu, 241Am, 242,243,244Cm(34Si); calculated half-lives and cluster preformation factors using generalized density-dependent cluster model (GDDCM). Comparison with experimental data.
doi: 10.1103/PhysRevC.82.024311
Phys.Rev. C 81, 034307 (2010)
N.Pillet, N.Sandulescu, P.Schuck, J.-F.Berger
Two-particle spatial correlations in superfluid nuclei
NUCLEAR STRUCTURE 102Sr, 152Sm, 238U; calculated local and nonlocal parts of the pairing tensor, and coherence lengths. 60Ni, 120,136Sn, 212Pb; calculated pairing correlation energies and average pairing fields, and coherence lengths. Effect of pairing on two-neutron spatial correlations in deformed nuclei. Hartree-Fock Bogoliubov calculations with D1S Gogny force.
doi: 10.1103/PhysRevC.81.034307
J.Phys.(London) G37, 085108 (2010)
A.A.Raduta, R.Budaca, A.Faessler
Closed formulas for ground band energies of nuclei with various symmetries
NUCLEAR STRUCTURE 104Ru, 102Pd, 108Te, 150,154,156Nd, 150,152,156,158Sm, 152,154,160,162Gd, 154,156,162,164Dy, 166Er, 172,174Yb, 176Hf, 170,182,186W, 174,178,180,186Os, 176,178,180Pt, 228,232Th, 232,234,236,238U, 236,238,240,242Pu, 248Cm; calculated level energies, J, π; deduced generalized Holmberg-Lipas formula. A time-dependent variational principal.
doi: 10.1088/0954-3899/37/8/085108
Nucl.Phys. A832, 220 (2010)
K.P.Santhosh, R.K.Biju, S.Sahadevan
Semi-empirical formula for spontaneous fission half life time
RADIOACTIVITY 232Th, 228,230,232,234,236,238U, 232,234,236,238,240,242,244Pu, 240,242,244,246,248,250Cm, 240,242,244,246,248,250,252,254Cf, 246,248,250,252,254,256,258,260Fm, 250,252,254,256,258,260,262,264,266No, 254,256,258,260,262,264,266,268Rf, 258,260,262,264,266,268,270,272Sg, 264,266,268,270,272,274,276Hs, 260,262,264,266,268,270,272,274,276,278,280,282,284Ds, 264,266,268,270,272,274,276,278,280,282,284,286,288Cn, 268,270,272,274,276,278,280,282,284,286,288,290,292Fl, 272,274,276,278,280,282,284,286,288,290,292,294,296Lv, 276,278,280,282,284,286,288,290,292,294,296,298,300Og, 274,276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316,318,320120, 276,278,280,282,284,286,288,290,292,294,296,298,300,302,304,306,308,310,312,314,316122(α), (SF); calculated T1/2 using a Coulomb and Proximity Potential model and semi-empirical formula. Discussed SHE survivability. Comparison with data and systematics.
doi: 10.1016/j.nuclphysa.2009.10.160
Phys.Rev. C 82, 014607 (2010)
B.Singh, S.K.Patra, R.K.Gupta
Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities
RADIOACTIVITY 221Fr, 221,222,223,224,226Ra, 223,225Ac, 226Th(14C); 223Ac(15N); 226Th(18O); 228Th(20O); 230Th, 231Pa, 230U(22Ne); 231Pa(23F); 230,232,233,234U(24Ne); 232,233,234,235,236U, 236,238Pu(28Mg); 234U(25Ne), (26Ne); 238U, 241Am, 242Cm(34Si); 237Np, 238Pu(30Mg); 238Pu(32Si); calculated empirical preformation probabilities for cluster decays using preformed cluster model (PCM) and relativistic mean-field (RMF) theory densities.
doi: 10.1103/PhysRevC.82.014607
Phys.Atomic Nuclei 73, 1684 (2010); Yad.Fiz. 73, 1731 (2010)
S.V.Tolokonnikov, E.E.Saperstein
Description of superheavy nuclei on the basis of a modified version of the DF3 energy functional
NUCLEAR STRUCTURE 35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57Ca, 176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Pb, 218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282U, 298Fl; calculated proton and neutron single-particle spectrum, neutron separation energies, rms charge radii. DF-3, HFB-17 functionals.
doi: 10.1134/S1063778810100054
Phys.Atomic Nuclei 73, 1838 (2010); Yad.Fiz. 73, 1890 (2010)
V.A.Tryasuchev, A.V.Isaev
Calculation of eta-meson-nucleus quasibound states with optical potentials of the square-well and woods-saxon forms
NUCLEAR STRUCTURE 7Li, 11B, 12C, 15N, 16O, 24Mg, 40Ca, 84Kr, 150Sm, 208Pb, 238U; calculated bound states of eta mesons and nuclei.
doi: 10.1134/S1063778810110050
Int.J.Mod.Phys. E19, 548 (2010)
D.Vretenar, T.Niksic, P.Ring
Relativistic nuclear energy density functionals
NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 228,230,232,234,236,238,240,242U, 232,234,236,238,240,242,244,246Pu, 238,240,242,244,246,248,250Cm, 242,244,246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256Fm, 250,252,254,256,258,260,262No; calculated ground-state axial quadrupole and hexadecapole moments.
doi: 10.1142/S0218301310014960
Phys.Rev. C 81, 054309 (2010)
M.Warda, X.Vinas, X.Roca-Maza, M.Centelles
Analysis of bulk and surface contributions in the neutron skin of nuclei
NUCLEAR STRUCTURE 100,132Sn, 208Pb; Z=50, A=100-176; Z=82, A=168-268; calculated halo factor, neutron and proton densities, neutron skin thicknesses using Gogny, Skyrme, and covariant nuclear mean-field interactions. 40,48Ca, 54,56,57Fe, 58,60,64Ni, 59Co, 90,96Zr, 106,116Cd, 112,116,120,124Sn, 122,124,126,128,130Te, 208Pb, 209Bi, 232Th, 238U; analyzed experimental neutron skin thicknesses with results of the covariant NL3 and FSUGold parameter sets of the nonrelativistic Skyrme SLy4 and Gogny D1S forces.
doi: 10.1103/PhysRevC.81.054309
Phys.Rev. C 81, 067301 (2010)
Y.Z.Wang, J.M.Dong, B.B.Peng, H.F.Zhang
Fine structure of α decay to rotational states of heavy nuclei
RADIOACTIVITY 172,174,186Os, 180,182,184,186,188,190Pt, 186,188Hg, 228,230,232Th, 230,232,234,236,238U, 232,234,236,238,240,242,244Pu, 238,240,242,244,246,248,250,252,254Cm, 246,248,250,252,254,256Fm, 252,254,256No, 256Rf, 260Sg(α); calculated Q-values, α branches to 2+ and 4+ states using generalized liquid drop model and improved Royer's formula calculations. Comparison with experimental data.
doi: 10.1103/PhysRevC.81.067301
Eur.Phys.J. A 44, 287 (2010)
Y.Z.Wang, J.Z.Gu, J.M.Dong, B.B.Peng
Properties of α-decay to ground and excited states of heavy nuclei
RADIOACTIVITY 222,224,226Ra, 226,228,230,232Th, 228,230,232,234,236,238U, 234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 244,246,248,250,252Cf, 248,250,252Fm, 252No(α); calculated branching ratios, T1/2 using generalized liquid drop model and Royer's formula. Comparison with data and other models.
doi: 10.1140/epja/i2010-10948-4
Phys.Rev. C 81, 041306 (2010)
S.Zhu, M.P.Carpenter, R.V.F.Janssens, S.Frauendorf, I.Ahmad, T.L.Khoo, F.G.Kondev, T.Lauritsen, C.J.Lister, D.Seweryniak
Possible double-octupole phonon band in 238U
NUCLEAR REACTIONS 238U(207Pb, 207Pb'), E=1400 MeV; measured Eγ, γγ-coin using Gammasphere array, unsafe Coulomb excitation. 238U; deduced levels, J, π, bands, Routhians, double-octupole phonon excitation. Comparison with band structures in 240Pu.
doi: 10.1103/PhysRevC.81.041306
J.Phys.:Conf.Ser. 312, 092004 (2011)
A.V.Afanasjev, H.Abusara, E.Litvinova, P.Ring
Spectroscopy of the heaviest nuclei (theory)
NUCLEAR STRUCTURE 240Pu, 241Am, 251Md; calculated moments of inertia of one-quasiproton configurations using CDFT (covariant density functional theory); compared with data. 228,230,232,234Th, 232,234,236,238,240U, 237,238,240,242,244,246Pu, 242,244,246,248,250Cm, 252,254Cf; calculated deformation energy curves, fission barriers using RMF plus BCS with NL3* parameterization; compared to data.
doi: 10.1088/1742-6596/312/9/092004
Physics of Part.and Nuclei 42, 613 (2011)
A.S.Barabash
Double beta decay experiments
COMPILATION 48Ca, 76Ge, 74,82Se, 96Zr, 100Mo, 106,116Cd, 128,130Te, 150Nd, 238U, 130,132Ba, 136Xe, 78Kr, 58Ni, 96Ru, 112Sn, 136Ce, 162Er; compiled experimental and evaluated double beta decay data.
doi: 10.1134/S1063779611040022
Phys.Rev. C 83, 044321 (2011)
D.Bonatsos, P.E.Georgoudis, D.Lenis, N.Minkov, C.Quesne
Bohr Hamiltonian with a deformation-dependent mass term for the Davidson potential
NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108,110,112,114,116Pd, 106,108,110,112,114,116,118,120Cd, 118,120,122,124,126,128,130,132,134Xe, 130,132,134,136,142Ba, 134,136,138Ce, 140,148,150Nd, 140,142,152,154Sm, 142,144,152,154,156,158,160,162Gd, 154,156,158,160,162,164,166Dy, 156,160,162,164,166,168,170Er, 162,164,166,168,170,172,174,176,178Yb, 166,168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 176,178,180,184,186,188,190Os, 186,188,190,192,194,196,198,200Pt, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf; calculated levels, J, π, B(E2). Bohr collective Hamiltonian, β2 deformation dependent mass, curved space, Davidson potential. Comparison with experimental data.
doi: 10.1103/PhysRevC.83.044321
Phys.Atomic Nuclei 74, 1713 (2011)
V.P.Chechev
The evaluation of half-lives and other decay data used in nuclear astrophysics and cosmochronology
COMPILATION 26Al, 40K, 53Mn, 60Fe, 87Rb, 93Zr, 98Tc, 107Pd, 129I, 135Cs, 146Sm, 176Lu, 182Hf, 187Re, 205Pb, 232Th, 235,238U, 244Pu, 247Cm; compiled experimental nuclear structure data, T1/2. Cosmochronology applications.
doi: 10.1134/S106377881111007X
Phys.Rev. C 84, 061301 (2011)
J.Dukelsky, SH.Lerma, L.M.Robledo, R.Rodriguez-Guzman, S.M.A.Rombouts
Exactly solvable pairing Hamiltonian for heavy nuclei
NUCLEAR STRUCTURE 238U, 154Sm; calculated state-dependent gaps, proton pairing tensor, pairing energies. Exactly solvable Hamiltonian from Richardson-Gaudin models. Comparison with Gogny self-consistent mean-field calculations in the Hartree-Fock basis.
doi: 10.1103/PhysRevC.84.061301
Radiochim.Acta 99, 441 (2011)
R.-D.Herzberg, D.M.Cox
Spectroscopy of actinide and transactinide nuclei
COMPILATION 183,185,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,210,212Pb, 184,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212Bi, 191,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212Po, 191,193,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214Po, 195,197,199,200,201,202,203,204,205,206,207,208,210,211,212,213,214,217,219Rn, 201,202,203,204,205,206,207,208,209,210,211,212,213,214Po, 195,197,199,200,201,202,204,206,208,211,212,213,214,215,218,227Rn, 203,205,207,208,210,212,213,214,215,216,217,225,229,231Ra, 206,208,215,216,217,218,222,227Ac, 216,217Th, 217,233,234Pa, 218,234,235,236,238,239U, 235,236,237,239,240,242Np, 235,236,237,238,239,240,241,242,243,245Pu, 236,237,238,239,240,241,242,243,244,245,246Am, 240,241,242,243,244,245,246,247Cm, 242,243,244,245,250Bk, 249,251Cf, 250,254Es, 247,248,250,251,256Fm, 258Md, 250,251,252,253,254No, 253Lr, 253,256,257Rf, 257,258Db, 261,263,265Sg, 262Bh, 265,267Hs, 270,271Ds; compiled T1/2, J, π, energy for the longest-lived isomers.
J.Korean Phys.Soc. 59, 803s (2011)
S.Hilaire, M.Girod, S.Goriely
Improving the Description of Collective Effects within the Combinatorial Model of Nuclear Level Densities
NUCLEAR STRUCTURE 42K, 56Fe, 60Co, 94Nb, 107Cd, 127Te, 148Pm, 172Yb, 194Ir, 208Pb, 237U, 239Pu; calculated level density. 54Cr, 100Ru, 130Xe, 180Hf, 208Pb, 238U; calculated temperature, deformation. 238U; calculated level density, temperatures from 0 to 100 MeV. HFB plus combinatorial approach.
NUCLEAR REACTIONS 235,236U, 237Np, 238,240,241Pu(n, f), E=0.01-30 MeV; calculated σ using microscopic fission path and combinatorial level density.
doi: 10.3938/jkps.59.803
Phys.Rev. C 84, 024309 (2011)
I.Inci, D.Bonatsos, I.Boztosun
Electric quadrupole transitions of the Bohr Hamiltonian with the Morse potential
NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108Pd, 108,110,112,114,116,118Cd, 118,120,124,128Xe, 130,132,134,142Ba, 148Nd, 152Gd, 154Dy, 192,194,196,198Pt, 154Sm, 156Gd, 158Gd, 158,160Dy, 162Dy, 164Dy, 156,162,164,166,168,170Er, 166,168,170,172,174,176Yb, 174,176,178Hf, 182,184,186W, 186,188Os, 230,232Th, 234,236,238U, 238Pu, 250Cf; calculated B(E2) ratios for ground-state bands and interband transitions in γ-soft and deformed nuclei. Asymptotic iteration method (AIM) for collective Bohr Hamiltonian with the Morse potential. Comparison with experimental data.
doi: 10.1103/PhysRevC.84.024309
Phys.Rev. C 84, 034312 (2011)
P.E.Koehler
Reduced neutron widths in the nuclear data ensemble: Experiment and theory do not agree
NUCLEAR STRUCTURE 64,66,68Zn, 114Cd, 152,154Sm, 154,156,158,160Gd, 160,162,164Dy, 166,168,170Er, 172,174,176Yb, 182,184,186W, 232Th, 238U; analyzed reduced neutron widths for 1245 neutron resonances in the nuclear data ensemble (NDE); deduced disagreement with Porter Thomas distribution (PTD) based on Random matrix theory (RMT) predictions.
doi: 10.1103/PhysRevC.84.034312
Phys.Rev. C 84, 014310 (2011)
J.Le Bloas, M.Koh, P.Quentin, L.Bonneau, J.I.A.Ithnin
Exact Coulomb exchange calculations in the Skyrme-Hartree-Fock-BCS framework and tests of the Slater approximation
NUCLEAR STRUCTURE 16O, 24Mg, 40,48Ca, 48Cr, 48,56Ni, 90Zr, 106Mo, 100,132Sn, 174,176,178Hf, 206,208,210Pb, 238U, 298Fl, 310126; Z=20-34, N=28; Z=40-58, N=64; Z=52-62, N=78; Z=68-80, N=106; Z=76-88, N=126; Z=86-100, N=146; calculated Coulomb interaction and fission properties for even-even nuclei within the Skyrme-Hartree-Fock/Bardeen-Cooper-Schrieffer approach. Pairing correlations. 70Se; calculated deformation energy curves. 212Po, 214Rn, 216Ra, 218Th; calculated α decay properties.
doi: 10.1103/PhysRevC.84.014310
Eur.Phys.J. A 47, 135 (2011)
H.L.Liu, F.R.Xu, Y.Sun, P.M.Walker, R.Wyss
On the stability of high-K stability of high-K isomers in the second well of actinide nuclei
NUCLEAR STRUCTURE 238U, 236,238,242Pu, 240,242,244Cm; calculated levels, K, π, β2, β4, configurations, energy surface for broken-pair excitations. Energies compared to data.
doi: 10.1140/epja/i2011-11135-y
J.Korean Phys.Soc. 59, 1900s (2011)
O.Litaize, C.De Saint Jean, G.Noguere, P.Archier
Statistical Analysis of a Set of Actinide Resolved Resonance Parameters with CONRAD Code
NUCLEAR STRUCTURE 238U; calculated, analyzed resonance parameters using CONRAD code; deduced different distributions. Compared with JEFF-3.1, ENDF-B/VII.0.
doi: 10.3938/jkps.59.1900
Eur.Phys.J.Plus 126, 49 (2011)
S.G.Mashnik
Validation and verification of MCNP6 against intermediate and high-energy experimental data and results by other codes
NUCLEAR REACTIONS 18O(p, γ), 197Au(p, α), 238U(p, p), (p, d), (p, t), 56Fe(p, X)Na/Al/P/Cl/K/Sc/V/Mn, 40Ca(40Ar, p), 64Cu(20Ne, d), 238U(20Ne, t), (20Ne, 3He), (20Ne, α), 40Ca(9Be, X)Si, 64Cu(28Si, n), 12C(12C, π-), Cu(197Au, X), (208Pb, X), 181Ta(p, K+), (p, t), (p, π+), (p, π-), E<400 GeV; calculated σ, σ(θ, E) with MCNP6 code. Comparison with experimental data.
doi: 10.1140/epjp/i2011-11049-1
Ukr.J.Phys. 56, 511 (2011)
M.S.Nadirbekov, G.A.Yuldasheva
"Staggering" Effect in Even-even Nuclei with Quadrupole and Octupole Deformations
NUCLEAR STRUCTURE 230,234,236,238U, 232Th; calculated staggering effect in energy spectra. Comparison with experimental data.
Eur.Phys.J. A 47, 9 (2011)
I.Nishinaka, M.Tanikawa, Y.Nagame, H.Nakahara
Nuclear-charge polarization at scission in proton-induced fission of 233U
NUCLEAR REACTIONS 233U(p, F), E=11.5 MeV; measured fission fragments, (fragment)(fragment)-coin, En, In, (fragment)n-coin; deduced yields, average kinetic energy, neutron multiplicity vs fragment mass, neutron-to-proton ratio, nuclear charge polarization vs fragment mass. Measurements compared with other data.
doi: 10.1140/epja/i2011-11009-4
Phys.Rev. C 83, 041302 (2011); Pub.Note Phys.Rev. C 83, 059901 (2011)
K.Nomura, T.Otsuka, N.Shimizu, L.Guo
Microscopic formulation of the interacting boson model for rotational nuclei
NUCLEAR STRUCTURE 146,148,150,152,154Sm, 230,232,234,236,238U; calculated overlap between the intrinsic state and its rotation angle, and moments of inertia. 146,148,150,152,154Sm, 148,150,152,154,156,158,160Gd, 230Th, 232U; calculated yrast spectra of ground state rotational bands, J, π. Interacting boson model for rotational nuclei with axially symmetric strong deformation. Comparison with experimental data.
doi: 10.1103/PhysRevC.83.041302
Phys.Rev. C 83, 014314 (2011)
S.Peru, G.Gosselin, M.Martini, M.Dupuis, S.Hilaire, J.-C.Devaux
Giant resonances in 238U within the quasiparticle random-phase approximation with the Gogny force
NUCLEAR STRUCTURE 238U; calculated Kπ=0-, 0+, 1-, 1+ eigenvalues, B(E0), B(E1), B(E2) and B(E3) strengths for dipole, monopole, quadrupole, and octupole giant resonances and low-energy states. Fully consistent microscopic axially-symmetric deformed quasiparticle random-phase approximation (QRPA) approach using a finite-range Gogny force for Hartree-Fock-Bogolyubov mean field and QRPA matrix. Comparison with experimental data.
doi: 10.1103/PhysRevC.83.014314
Int.J.Mod.Phys. E20, 235 (2011)
P.Ring, H.Abusara, A.V.Afanasjev, G.A.Lalazissis, T.Niksic, D.Vretenar
Modern applications of Covariant Density Functional theory
NUCLEAR STRUCTURE 228,230,232,234Th, 232,234,236,238,240U, 236,238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf, 150Nd; calculated potential and deformation energy surfaces, J, π.
doi: 10.1142/S0218301311017570
Phys.Rev. C 84, 044608 (2011)
M.Warda, L.M.Robledo
Microscopic description of cluster radioactivity in actinide nuclei
RADIOACTIVITY 222,224,226Ra(14C); 226Th(18O); 226Ra, 228Th, 230U(20O); 230,232Th(22O); 230,232Th, 232U(24Ne); 232Th, 234U(26Ne); 234,238U(28Mg); 238Pu(30Mg), (32Si); 240Pu, 242Cm(34Si); calculated hyper-asymmetric fission barriers, T1/2. Hartree-Fock-Bogoliubov model for cluster decay. Comparison with experimental data.
NUCLEAR STRUCTURE 224Ra, 238Pu; calculated potential energy surfaces, fission barriers, shape evolution with quadrupole moment, potential energies, density distributions.
doi: 10.1103/PhysRevC.84.044608
Phys.Rev. C 83, 034323 (2011)
X.Wu, Z.H.Zhang, J.Y.Zeng, Y.A.Lei
Nuclear pairing reduction due to rotation and blocking
NUCLEAR STRUCTURE 168Yb, 168Hf, 177Ta, 178W, 193,194Hg, 238U, 253No; calculated moments of inertia and pairing gaps for normal deformed and superdeformed bands. Particle number-conserving (PNC) formalism for the cranked shell model. Comparison with number-projected Hartree-Fock-Bogolyubov approach, and with experimental data.
doi: 10.1103/PhysRevC.83.034323
Phys.Rev. C 84, 044312 (2011)
X.Zhang, C.Xu, Z.Ren
α decay to members of favored bands in both even-even and odd-A nuclei
RADIOACTIVITY 224,226Ra, 227,229Pa, 224,226,228,230,232Th, 226,228,230,232,233,234,235,236,238U, 232,234,236,237,238,239,240,241,242,244Pu, 239,241,243Am, 240,241,242,243,244,245,246,247,248Cm, 243,245,247,249Bk, 240,242,244,246,247,248,249,250,251,252,253,254Cf, 245,251,253,255Es, 246,248,250,251,252,253,254,255,256,257Fm, 252,254,256No, 256,258Rf(α); calculated partial α-decay T1/2 to members of favored bands. Geiger-Nuttall law, microscopic quantum tunneling theory. Comparison with experimental data.
doi: 10.1103/PhysRevC.84.044312
Phys.Rev. C 85, 054302 (2012)
B.Buck, A.C.Merchant, S.M.Perez
Electromagnetic transition strengths in heavy nuclei
NUCLEAR STRUCTURE 230,232Th, 234,238U; calculated reduced B(E2), B(M1) for transitions within and between K=0+, 1+ and 2+ bands. Cluster Model for the structure of heavy nuclei. Discussion of beta and gamma bands. Comparison with experimental data.
doi: 10.1103/PhysRevC.85.054302
Phys.Rev.Lett. 109, 202504 (2012)
M.Fallot, S.Cormon, M.Estienne, A.Algora, V.M.Bui, A.Cucoanes, M.Elnimr, L.Giot, D.Jordan, J.Martino, A.Onillon, A.Porta, G.Pronost, A.Remoto, J.L.Tain, F.Yermia, A.-A.Zakari-Issoufou
New Antineutrino Energy Spectra Predictions from the Summation of Beta Decay Branches of the Fission Products
RADIOACTIVITY 102,104,105,106,107Tc, 105Mo, 101Nb(β-); analyzed available data. 235,238U, 239,241Pu; deduced impact on the calculated antineutrino energy spectrum from 235,238U, 239,241Pu. Comparison with available data.
doi: 10.1103/PhysRevLett.109.202504
Phys.Rev. C 86, 044303 (2012)
S.Fracasso, E.B.Suckling, P.D.Stevenson
Unrestricted Skyrme-tensor time-dependent Hartree-Fock model and its application to the nuclear response from spherical to triaxial nuclei
NUCLEAR STRUCTURE 16O, 24Mg, 28Si, 120Sn, 178Os, 190W, 238U; calculated transition strength distributions of isovector giant dipole resonances using the Skyrme energy density functional (EDF) in the three dimensional time-dependent Hartree-Fock. Comparison with predictions from the (quasi)-particle random-phase approximation and experimental data.
doi: 10.1103/PhysRevC.86.044303
J.Phys.:Conf.Ser. 337, 012027 (2012)
S.Goriely, S.Hilaire, M.Girod
Latest development of the combinatorial model of nuclear level densities
NUCLEAR STRUCTURE 238U; calculated deformation, positive parity level density vs excitation energy, temperature using combinatorial approach. A=15-255; calculated s-wave neutron resonance spacings using HFB plus combinatorial densities. Compared with published compilation by Capote et al.
doi: 10.1088/1742-6596/337/1/012027
Phys.Rev. C 86, 064317 (2012)
S.Hilaire, M.Girod, S.Goriely, A.J.Koning
Temperature-dependent combinatorial level densities with the D1M Gogny force
NUCLEAR STRUCTURE 54Cr, 100Ru, 130Xe, 180Hf, 208Pb, 238U; calculated excitation energies, quadrupole deformations, moments of inertia as function of nuclear temperature. A=20-250; deduced ratio of HFB plus combinatorial densities to experimental s-wave neutron resonance spacings as function of temperature. 40Ca, 42K, 50,51V, 56,57Fe, 58Ni, 60Co, 68Zn, 90Zr, 90,94Nb, 93,94,95,96,97,98Mo, 107Cd, 127Te, 132Xe, 148,149Sm, 155Eu, 160,161,162Dy, 166,167,168Er, 171,172Yb, 178Hf, 194Ir, 208Pb, 210Bi, 237U, 238U, 238Np, 239Pu, 242Am; calculated combinatorial nuclear level densities (NLD) using temperature-dependent D1M Gogny interaction. Comparison with experimental data. Z=50, N=50-120; deduced ratio of Maxwellian-averaged (n, γ) rates for T9=1 obtained with current NLDs and those in previous calculations.
doi: 10.1103/PhysRevC.86.064317
Phys.Rev. C 86, 044317 (2012)
M.Ismail, A.Y.Ellithi, M.M.Botros, A.Abdurrahman
Penetration factor in deformed potentials: Application to α decay with deformed nuclei
RADIOACTIVITY 210Pb, 212,214,216,218Po, 214,216,218,220,222Rn, 216,218,220,222,224,226Ra, 218,220,222,224,226,228,230,232Th, 220,222,224,226,228,230,232,234,236,238U, 228,230,232,234,236,238,240,242,244Pu, 238,240,242,244,246,248Cm, 240,242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256,258No, 256,258,260Rf, 260,266Sg, 264,266,270Hs, 270,280Ds, 284Cn, 286,288Fl, 290,292Lv, 294118(α); calculated half-lives using deformed density dependent cluster model. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.044317
Phys.Rev. C 85, 034305 (2012)
P.Jachimowicz, M.Kowal, J.Skalski
Secondary fission barriers in even-even actinide nuclei
NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 230,232,234,236,238,240,242U, 234,236,238,240,242,244,246,248Pu, 240,242,244,246,248,250,252Cm, 248,250,252,254Cf; calculated mass excess, microscopic and macroscopic energies, deformation parameters, second fission barriers, surface contours, second minima excitation energies. macroscopic-microscopic model in six-dimensional deformation space for even-even actinides. Comparison with experimental data.
doi: 10.1103/PhysRevC.85.034305
Phys.Rev. C 86, 024319 (2012)
R.V.Jolos, P.von Brentano, J.Jolie
Second order phase transitions from octupole-nondeformed to octupole-deformed shape in the alternating parity bands of nuclei around 240Pu based on data
NUCLEAR STRUCTURE 232Th, 238U, 240Pu; calculated potential energy of the octupole collective motion as function of β3 parameter and angular momentum; analyzed levels, J, π, ground-state alternating parity bands. Supersymmetric quantum mechanics, two-center octupole wave functions ansatz, and Landau theory of phase transitions. Evidence for second order phase transition from reflection-symmetric to reflection-asymmetric shapes.
doi: 10.1103/PhysRevC.86.024319
Phys.Rev. C 85, 024304 (2012)
M.Kortelainen, J.McDonnell, W.Nazarewicz, P.-G.Reinhard, J.Sarich, N.Schunck, M.V.Stoitsov, S.M.Wild
Nuclear energy density optimization: Large deformations
NUCLEAR STRUCTURE 236,238U, 240Pu, 242Cm; calculated energies of fission isomers in UNEDF1 optimization. 192,194Hg, 192,194,196Pb; calculated energies of bandheads in superdeformed nuclei. 208Pb; calculated single particle energies. 236,238U, 238,240,242,244Pu, 242,244,246,248Cm; calculated inner barrier heights, outer barrier heights. N=14-156, Z=10-104; deduced rms deviations from experimental values for binding energy, S(2n), S(2p), three-point odd-even mass difference, rms proton radii for even-even nuclei. Hartree-Fock-Bogoliubov theory, POUNDerS optimization algorithm, UNEDF0 and UNEDF1 parameterizations. Neutron drops. Comparison with experimental data.
doi: 10.1103/PhysRevC.85.024304
Phys.Rev. C 85, 034316 (2012)
J.Kotila, F.Iachello
Phase-space factors for double-β decay
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 128Te, 130Te, 136Xe, 148Nd, 150Nd, 154Sm, 160Gd, 198Pt, 232Th, 238U(2β-); calculated phase-space factors, Single-electron spectra, summed energy spectra, half-lives, angular correlations, effective nuclear matrix elements for 2νββ and 0νββ decay modes. Exact Dirac wave functions with finite nuclear size and electron screening. Comparison with previous studies and experimental data.
doi: 10.1103/PhysRevC.85.034316
Eur.Phys.J. A 48, 112 (2012)
S.N.Kuklin, T.M.Shneidman, G.G.Adamian, N.V.Antonenko
Alpha-decay fine structures of U isotopes and systematics for isotopic chains of Po and Rn
RADIOACTIVITY 228Th(20O), 222Ra(14C), 232U(24Ne), 234U(26Ne), 236U(30Mg), 236Pu(28Mg), 238Pu(32Si); calculated T1/2. 184,186,188,190,192,194,196,198,200,202,204,206,208Po, 194,196,198,200,202,204,206,208,210Rn, 224,226,228,230,232,234,236,238U(α); calculated α spectroscopic factor for low-lying positive parity states, T1/2. Zero-point vibrations in the charge-asymmetry coordinate; compared to data.
NUCLEAR STRUCTURE 184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 194,196,198,200,202,204,206,208,210,212,214,216,218,220,222Rn; calculated α cluster spectroscopic factor using zero-point vibrations in the charge-asymmetry coordinate. Compared to data.
doi: 10.1140/epja/i2012-12112-8
Phys.Rev. C 86, 044612 (2012)
R.Kumar
Cluster radioactivity using various versions of nuclear proximity potentials
RADIOACTIVITY 114Ba(12C); 221Fr, 221Ra, 222,223,224,226Ra, 223,225Ac, 226Th(14C); 221Fr, 223Ac(15N); 223Ra, 226,227,228,230Th, 228U, 227Pa(18O); 225,226Ra, 227Ac, 228,230Th, 229Pu(20O); 230,232U, 232Pu, 228Th, 229Pa, 231Np(22Ne); 229Ac, 231Pa(23F); 228,229,230,231,232Th, 231Pa, 230,232,233,234,235,236U, 233Np, 234Pu(24Ne); 233,234,235U, 231Th(25Ne); 235U(25Mg); 232U, 232,234Pu(26Mg); 234,236U, 232Th(26Ne); 232,233,234,235,236U, 234,236,238Pu, 238Cm, 235Np, 237Pu, 237Am(28Mg); 235U, 237Pu(29Mg); 236,238U, 237Np, 238,239Pu(30Mg); 238Cm(30Si); 236,237,238Pu, 239Am, 240,241Cm(32Si); 238U, 238,240Pu, 241Am, 240,242,243,244Cm(34Si); 239Pu(34Mg); 252Cf(46Ar), (48Ca), 50Ca; calculated half-lives for cluster decay for different nuclear proximity potentials and for spherical and deformed structures, preformation probability. The preformed cluster-decay model. Comparison with experimental data, and with universal decay law (UDL) and generalized density-dependent cluster model (GDDCM) calculations.
doi: 10.1103/PhysRevC.86.044612
Phys.Rev. C 85, 011301 (2012)
B.-N.Lu, E.-G.Zhao, S.-G.Zhou
Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density functional theory: Barrier heights and saddle point shapes
NUCLEAR STRUCTURE 240Pu, 248Cm; calculated potential energy surfaces. 230,232Th, 232,234,236,238U, 238,240,242,244Pu, 242,244,246,248Cm; calculated inner and outer fission barrier heights. Importance of triaxial and octupole shapes in fission path. Multidimensional constrained covariant density functional theory. Comparison with experimental data.
doi: 10.1103/PhysRevC.85.011301
Int.J.Mod.Phys. E21, 1250044 (2012)
M.S.Nadirbekov, G.A.Yuldasheva, N.Minkov, W.Scheid
Collective excited states in even-even nuclei with quadrupole and octupole deformations
NUCLEAR STRUCTURE 150Nd, 152,154Sm, 154,156,158Gd, 156Dy, 162,164Er, 224Ra, 228Th, 232,234,236,238U, 240Pu; calculated energy levels, J, π, staggering effects, yrast bands. Comparison with available data.
doi: 10.1142/S0218301312500449
Int.J.Mod.Phys. E21, 1250050 (2012)
B.Nerlo-Pomorska, K.Pomorski, J.Bartel
Dynamical coupling of rotation with the pairing field in heavy nuclei
NUCLEAR STRUCTURE 230,232,234,236,238,240U, 242,246,248Cm, 248,250,252,254No; calculated level energies, J, π, rotational bands. Macroscopic-macroscopic model with the Lublin-Strasbourg Drop, the Yukawa-folded single-particle potential, comparison with available data.
doi: 10.1142/S0218301312500504
Phys.Rev. C 86, 024317 (2012)
V.Prassa, T.Niksic, G.A.Lalazissis, D.Vretenar
Relativistic energy density functional description of shape transitions in superheavy nuclei
NUCLEAR STRUCTURE 226,228,230,232,234,236Th, 228,230,232,234,236,238,240,242U, 232,234,236,238,240,242,244,246Pu, 238,240,242,244,246,248,250Cm, 242,244,246,248,250,252,254,256Cf, 242,244,246,248,250,252,254,256Fm, 250,252,254,256,258,260,262No; calculated binding energies, ground-state axial quadrupole moments. 236,238U, 240Pu, 242Cm; calculated constrained energy curves as a function of quadrupole deformation parameter. 298,300120, 294,296Og, 290,292Lv, 286,288Fl, 282,284Cn, 278,280Ds; calculated RHB axially symmetric energy curves, triaxial energy contours in β-γ plane. 284Cn, 292Lv, 300120; calculated proton and neutron density distributions. Microscopic, relativistic energy density functional (REDF)-based, quadrupole collective Hamiltonian model.
RADIOACTIVITY 234,236,238,240,242,244Pu, 238,240,242,244,246,248,250,252Cm, 242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256No, 256,258Rf, 260,262Sg, 271,272Bh, 275,276Mt, 278,280Ds, 279,280Rg, 282,284Cn, 283,284Nh, 286,288Fl, 287,288Mc, 290,292Lv, 293,294Ts, 294,296Og, 298,300120(α); calculated Q(α), half-lives. Microscopic, relativistic energy density functional (REDF)-based, quadrupole collective Hamiltonian model. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.024317
Phys.Rev. C 85, 044608 (2012)
Y.Ren, Z.-Z.Ren
New Geiger-Nuttall law for α decay of heavy nuclei
RADIOACTIVITY 190,191,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,212,213,214,215,216,217,218Po, 204,206,208,210,212,213,214,216,218,220,222Rn, 202,204,206,214,215,216,218,220,222,224,226Ra, 212,214,216,217,218,220,222,224,226,228,230,232Th, 218,219,222,224,226,228,230,232,234,236,238U, 158,160,162,164,166,168W, 156,158,160,162Hf, 154,156,158Yb, 152,154,156Er, 150,152,154Dy, 148,150,152Gd, 146,148Sm, 144Nd(α); calculated T1/2 by new Geiger-Nuttall law. Comparison with experimental data.
doi: 10.1103/PhysRevC.85.044608
J.Phys.(London) G39, 105103 (2012)
L.M.Robledo, R.R.Rodriguez-Guzman
Octupole deformation properties of actinide isotopes within a mean-field approach
NUCLEAR STRUCTURE 220,222,224,226,228,230,232,234,236,238,240U, 222,224,226,228,230,232,234,236,238,240,242Pu, 222,224,226,228,230,232,234,236,238,240,242Cm, 222,224,226,228,230,232,234,236,238,240,242Cf; calculated octupole deformation, B(E1), B(E3). Systematic mean-field calculations, comparison with experimental data.
doi: 10.1088/0954-3899/39/10/105103
Phys.Rev. C 86, 044326 (2012)
G.Royer, M.Jaffre, D.Moreau
Fission barriers and half-lives of actinides in the quasimolecular shape valley
RADIOACTIVITY 230,231,233Th, 232,234,235,236,237,238,239U, 238Np, 238,239,240,241,243Pu, 242,243,244Am, 243,245,248Cm, 250Bk, 250Cf, 255,256Es, 255,256Fm, 256No(SF); calculated half-lives, fission barriers using the generalized liquid-drop model. Quasi-molecular shapes. Comparison with experimental data.
doi: 10.1103/PhysRevC.86.044326
Nucl.Phys. A889, 29 (2012)
K.P.Santhosh, B.Priyanka, M.S.Unnikrishnan
Cluster decay half-lives of trans-lead nuclei within the Coulomb and proximity potential model
RADIOACTIVITY 199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226Fr(14C), 202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230Ra(14C), (20O), 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232Ac(14C), (15N), 209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237Th(16C), (18O), (20O), (22O), (24Ne), (26Ne), 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238Pa(23F), (24Ne), 217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241U(20O), (22Ne), (24Ne), (25Ne), (26Ne), (28Mg), (29Mg), (30Mg), 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242Np(30Mg), 225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244Pu(28Mg), (30Mg), (32Si), (34Si), 231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246Am(34Si), 233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249Cm(34Si); calculated Q-value, T1/2 using CPPM (Coulomb and proximity potential model), Universal formula for cluster decay, Universal decay law and Scaling Law.
doi: 10.1016/j.nuclphysa.2012.07.002
Phys.Scr. 86, 015201 (2012)
O.A P.Tavares, E.L.Medeiros
A simple description of cluster radioactivity
RADIOACTIVITY 238U, 239,240Pu, 241,243Am, 240,242,243Cm(34Si), 236,237Np, 238Pu, 241Am, 240,242Cm(32Si), 252Cf, 254Es(46Ar), 252Es(48Ca), 254Es, 258Md, 259No(50Ca), 259No(49Ca), 228Th(20O), 240Pu(34Si), 259No(50Ca), 282Rg(73Ni), 291Mc(85Br); calculated T1/2, Q-values, branching ratios. Comparison with available data.
doi: 10.1088/0031-8949/86/01/015201
Chin.Phys.C 36, 1603 (2012)
M.Wang, G.Audi, A.H.Wapstra, F.G.Kondev, M.MacCormick, X.Xu, B.Pfeiffer
The AME2012 atomic mass evaluation (II). Tables, graphs and references
COMPILATION A=1-295; compiled, evaluated atomic mass data.
J.Phys.(London) G39, 124009 (2012)
K.Zuber
Double beta decay experiments
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 124Sn, 130Te, 136Xe, 150Nd, 238U(2β-), 152Gd, 164Er, 180W, 156Dy, 106Cd, 40Ca, 138Ce, 196Hg, 36Ar, 132Ba, 124Xe, 54Fe(2EC); analyzed available experimental data; deduced sensitivity.
doi: 10.1088/0954-3899/39/12/124009
Phys.Rev. C 88, 014320 (2013)
A.V.Afanasjev, O.Abdurazakov
Pairing and rotational properties of actinides and superheavy nuclei in covariant density functional theory
NUCLEAR STRUCTURE 228,230,232,234,236,238,240Th, 230,232,234,236,238,240U, 234,236,238,240,242,244,246Pu, 240,242,244,246,248,250Cm, 244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 248,250,252,254,256,258No, 254,256,258,260,262Rf, 258,260,262,266Sg; calculated scaling factors, moments of inertia, β2, neutron and proton three-point indicators, moment of inertia versus rotational frequency. 242,244Pu, 248Cm; calculated kinematic moment of inertia for ground state bands. 244Cm; calculated neutron and proton single-particle energies. 237U, 239,243Pu, 235,237Np, 241Am, 247,249Cm, 249Cf, 251Md, 253No, 234,236U, 238,240,242Pu, 246,248Cm, 248Cf, 250Fm, 252No; calculated kinematic moment of inertia for one-quasiparticle bands in odd-A nuclei and ground-state bands in even-A nuclei. 236,238U, 236,239,240Pu, 242Am; calculated kinematic moment of inertia, and quadrupole moments of superdeformed (SD) rotational bands and SD fission isomers. N=144-176, Z=102, 104, 106, 108, 110; calculated moments of inertia and β2 parameter for superheavy nuclides. Cranked relativistic Hartree-Bogoliubov theory and Lipkin-Nogami method (CRHB+LN) with NL1 and NL3* interaction parameters of covariant density functional theory (CFDT). Comparison with experimental data.
doi: 10.1103/PhysRevC.88.014320
Phys.Rev. C 87, 051306 (2013)
B.K.Agrawal, J.N.De, S.K.Samaddar, G.Colo, A.Sulaksono
Constraining the density dependence of the symmetry energy from nuclear masses
NUCLEAR STRUCTURE 208Pb, 238U; calculated symmetry slope parameter L, neutron skin thickness for spherical and deformed nuclei, symmetry energy using a microscopic framework with different energy density functionals.
doi: 10.1103/PhysRevC.87.051306
Phys.Rev. C 88, 034316 (2013)
D.Bonatsos, P.E.Georgoudis, N.Minkov, D.Petrellis, C.Quesne
Bohr Hamiltonian with a deformation-dependent mass term for the Kratzer potential
NUCLEAR STRUCTURE 98,100,102,104Ru, 102,104,106,108,110,112,114,116Pd, 106,108,110,112,114,116,118,120Cd, 118,120,122,124,126,128,130,132,134Xe, 130,132,134,136,142Ba, 134,136,138Ce, 140,148,150Nd, 140,142,152,154Sm, 142,144,152,154,156,158,160,162Gd, 154,156,158,160,162,164,166Dy, 156,160,162,164,166,168,170Er, 162,164,166,168,170,172,174,176,178Yb, 166,168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 176,178,180,184,186,188,190Os, 186,188,190,192,194,196,198,200Pt, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf; calculated levels, J, π, ground, β and γ bands, B(E2), ratios of level energies of yrast bands and low-lying positive-parity levels. Deformation-dependent mass (DDM) Bohr Hamiltonian with Kratzer potential obtained for γ-unstable, axially symmetric prolate deformed, and triaxial nuclei. Techniques of supersymmetric quantum mechanics (SUSYQM).
doi: 10.1103/PhysRevC.88.034316
At.Data Nucl.Data Tables 99, 345 (2013)
C.Fry, M.Thoennessen
Discovery of actinium, thorium, protactinium, and uranium isotopes
COMPILATION 206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236Ac, 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238Th, 212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239Pa, 217,218,219,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,242U; compiled first identification (or discovery) of isotopes.
doi: 10.1016/j.adt.2012.03.002
Phys.Rev. C 88, 054325 (2013)
S.A.Giuliani, L.M.Robledo
Fission properties of the Barcelona-Catania-Paris-Madrid energy density functional
RADIOACTIVITY 226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272,274,276,278,280,282U, 238,240,242,244Pu, 240,242,244,246,248Cm, 250,252Cf, 250,252,254,256Fm, 252,254,256No, 256,258,260Rf, 258,260,262Sg, 264Hs, 286Fl(SF); calculated SF half-lives, fission barrier height parameters and excitation energies of fission isomers, Z, N and A of emitted fragments, HFB energies as a function of the quadrupole moment Q20. Barcelona-Catania-Paris-Madrid (BCPM) energy density functional with mean-field techniques. Comparison with experimental data.
doi: 10.1103/PhysRevC.88.054325
Phys.Rev. C 88, 034306 (2013)
R.V.Jolos, P.von Brentano, R.F.Casten
Anharmonicity of the excited octupole band in actinides using supersymmetric quantum mechanics
NUCLEAR STRUCTURE 232Th, 238U, 240Pu; calculated levels, J, π of ground-state, octupole and alternating parity bands. E1 and E2 transition matrix elements. Supersymmetric quantum mechanical techniques. Comparison with experimental data.
doi: 10.1103/PhysRevC.88.034306
Phys.Rev. C 87, 067304 (2013)
H.L.Liu, F.R.Xu
Enhanced octupole correlation due to unpaired nucleons in actinide K-isomeric states
NUCLEAR STRUCTURE 230,232,234,236,238,240,242Th, 232,234,236,238,240,242,244U, 234,236,238,240,242,244,246Pu, 236,238,240,242,244,246,248Cm; calculated 2-qp high-K levels, J, π, deformation parameters β2, β3, β4. 232Th, 234U, 236,238,240Pu; calculated potential-energy-surface in (β2, β3) plane. Configuration-constrained calculations with reflection asymmetry. Enhanced octupole correlations. K-isomers in actinides. Comparison with experimental data.
doi: 10.1103/PhysRevC.87.067304
Phys.Rev. C 87, 024310 (2013)
D.Ni, Z.Ren, T.Dong, Y.Qian
Nuclear charge radii of heavy and superheavy nuclei from the experimental α-decay energies and half-lives
NUCLEAR STRUCTURE 140Ce, 142,144Nd, 144,146,148Sm, 146Gd, 148,150,152Dy, 150,152,154Er, 152,154,156,158Yb, 182W, 184,186Os, 178,180,182,184Pt, 182,184,186,188,190,206Hg, 190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 200,202,204,206,208,210Po, 202,204,206,208,210,212,218,220,222Rn, 208,210,212,214,220,222,224,226,228Ra, 228,230,232Th, 234,236,238U, 238,240,242,244Pu, 242,244,246,248Cm, 242,244,246,248,250,252Cf, 248,250,252Fm, 252,254No, 256Rf, 260,262,264,266Sg, 266Hs, 282,284Cn, 286,288Fl, 290Lv; calculated rms charge radii, charge distribution using the generalized density dependent cluster model (GDDCM). A formula derived from Wentzel-Kramers-Brillouin (WKB) barrier penetration probability is proposed to calculate nuclear charge radii from the experimental α-decay energies and half-lives. Comparison with experimental data.
doi: 10.1103/PhysRevC.87.024310
J.Phys.(London) G40, 035104 (2013)
N.S.Rajeswari, M.Balasubramaniam
Nuclear surface energy coefficients in α-decay
RADIOACTIVITY 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210Pb, 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 202,204,206,208,210,212,214,216,218,220,222,224,226Ra, 210,212,214,216,218,220,222,224,226,228,230,232Th, 220,222,224,226,228,230,232,234,236,238U, 228,230,232,234,236,238,240,242,244Pu, 240,242,244,246,248,250Cm, 240,242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 250,252,254,256No(α); calculated T1/2. Modified unified fission model approach, comparison with experimental data.
doi: 10.1088/0954-3899/40/3/035104
J.Phys.(London) G40, 105102 (2013)
W.M.Seif
The α decay spectroscopic factor of heavy and superheavy nuclei
RADIOACTIVITY 144Nd, 146,148Sm, 148,150,152Gd, 150,152,154Dy, 152,154,156Er, 154,156,158Yb, 156,158,160,162Hf, 158,160,162,164,166,168W, 162,164,166,168,170,172,174Os, 186Os, 166,168,170,172,174,176,178,180,182,184,186,188,190Pt, 172,174,176,178,180,182,184,186,188Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210Pb, 188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 196,198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 202,204,206,208,210,212,214,216,218,220,222,224,226Ra, 210,212,214,216,218,220,222,224,226,228,230,232Th, 218,220,222,224,226,228,230,232,234,236,238U, 238,240,242,244Pu, 238,240,242,244,246,248,250Cm, 240,242,244,246,248,250,252,254Cf, 246,248,250,252,254,256Fm, 252,254,256,258No, 256,258,260Rf, 260Sg, 266Sg, 264,266,268,270Hs, 270Ds, 286,288Fl, 290,292Lv, 294Og(α); calculated T1/2, spectroscopic factor. Comparison with experimental data.
doi: 10.1088/0954-3899/40/10/105102
Phys.Rev. C 88, 037303 (2013)
S.Stoica, M.Mirea
New calculations for phase space factors involved in double-β decay
RADIOACTIVITY 48Ca, 76Ge, 82Se, 96Zr, 100Mo, 110Pd, 116Cd, 128,130Te, 136Xe, 150Nd, 238U(2β-); calculated phase space factors (PSF) for ββ transitions to ground states and excited 0+ states. Numerical solution of Dirac equation including the finite nuclear size and electron screening effects. Comparison with other theoretical calculations using different approximations, and discussed possible causes of differences.
doi: 10.1103/PhysRevC.88.037303
Eur.Phys.J. A 49, 6 (2013)
O.A.P.Tavares, E.L.Medeiros
A calculation method to estimate partial half-lives for exotic radioactivities
RADIOACTIVITY 222,223Fr, 225Ra, 227Ac, 224Th(14C);224Ac, 225Pa(15N);226,227Th(18O);229Th(20O);232Th(26Ne);233,235U, 235,236Np(28Mg);235U(29Mg);238U, 239,240Pu, 241,243Am, 240Cm(34Si);237Np(30Mg);237Np, 241Am, 240Cm(32Si); calculated T1/2 using semi-empirical model; deduced model parameters. Compared with other calculations.
doi: 10.1140/epja/i2013-13006-y
Phys.Atomic Nuclei 76, 708 (2013); Yad.Fiz. 76, 758 (2013)
S.V.Tolokonnikov, Yu.S.Lutostansky, E.E.Saperstein
Self-consistent calculations of alpha-decay energies
NUCLEAR STRUCTURE 200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236Th, 208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244U, 222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248Pu, 294Og, 293,294Ts, 291Lv; calculated α-decay energies, mass excess. Self-consistent theory of finite Fermi systems, comparison with available data.
doi: 10.1134/S1063778813060136
J.Phys.(London) G40, 075101 (2013)
M.Zouioueche, A.Bouldjedri
A proton-neutron nuclear vibron model
NUCLEAR STRUCTURE 234,236,238U; calculated energy levels, J, π. The SU(3) limit of the nuclear vibron model of Daley and Iachello.
doi: 10.1088/0954-3899/40/7/075101
Phys.Rev. C 89, 014323 (2014)
B.-N.Lu, J.Zhao, E.-G.Zhao, S.-G.Zhou
Multidimensionally-constrained relativistic mean-field models and potential-energy surfaces of actinide nuclei
NUCLEAR STRUCTURE 240Pu; calculated potential energy curves as function of deformation and truncations, three-dimensional potential energy surface contours as function of deformation around the ground state, the inner barrier, and fission isomer. 230,232Th, 232,234,236,238,240U, 238,240,242,244,246Pu, 242,244,246,248,250Cm, 250,252Cf; calculated potential energy curves around the ground states and the first and second fission barriers, heights of the first second fission barriers. Multidimensionally-constrained relativistic mean-field (MDC-RMF) models, with the solution of Dirac equation in an axially deformed harmonic oscillator (ADHO) basis. Importance of nonaxial and spatial reflection asymmetric shapes in the study of potential energy surfaces and fission barriers of actinides and Superheavy nuclei. Comparison with available experimental data.
doi: 10.1103/PhysRevC.89.014323
Phys.Scr. 89, 054004 (2014)
B.Nerlo-Pomorska, K.Pomorski, P.Quentin, J.Bartel
Rotational bands in well deformed heavy nuclei
NUCLEAR STRUCTURE 230,232Th, 234,236,238U, 240,242Pu, 246Cm, 252No; calculated energy levels, J, π, rotational bands. Comparison with experimental data.
doi: 10.1088/0031-8949/89/5/054004
Eur.Phys.J. A 50, 27 (2014)
X.Vinas, M.Centelles, X.Roca-Maza, M.Warda
Density dependence of the symmetry energy from neutron skin thickness in finite nuclei
COMPILATION 40Ca, 54,56,57Fe, 59Co, 58,60,64Ni, 90,96Zr, 106,116Cd, 116,120,124Sn, 124,126,128,130Te, 208Pb, 209Bi, 232Th, 238U; compiled, calculated neutron skin thickness vs symmetry energy slope parameter. 208Pb; compiled calculations of mean-field model of parity-violating asymmetry vs skin thickness vs symmetry energy ope parameter and vs central radius, surface difuseness vs central radii.
doi: 10.1140/epja/i2014-14027-8