References quoted in the ENSDF dataset: 164DY ADOPTED LEVELS, GAMMAS

67 references found.

Clicking on a keynumber will list datasets that reference the given article.


1956HU49

Kgl.Danske Videnskab.Selskab, Mat.-Fys.Medd. 30, No.17 (1956)

T.Huus, J.H.Bjerregaard, B.Elbek

Measurement of Conversion Electrons from Coulomb Excitation of the Elements in the Rare Earth Region


1959BI10

Phys.Rev. 116, 730 (1959)

M.Birk, G.Goldring, Y.Wolfson

Lifetime of 2+ Rotational States

doi: 10.1103/PhysRev.116.730


1960EL07

Nuclear Phys. 19, 523 (1960)

B.Elbek, M.C.Olesen, O.Skilbreid

Inelastic Scattering from Even Rare Earth Isotopes

NUCLEAR STRUCTURE 154Sm, 150Sm, 152Sm, 160Gd, 160Dy, 156Gd, 158Gd, 162Dy, 154Gd, 166Er, 170Er, 168Er, 164Er, 164Dy, 174Yb, 170Yb, 172Yb, 176Yb, 148Sm; measured not abstracted; deduced nuclear properties.

doi: 10.1016/0029-5582(60)90262-5


1967KU07

Phys.Rev. 161, 1185 (1967); R.P.Scharenberg - Priv.Comm. (April 1972)

J.D.Kurfess, R.P.Scharenberg

Pulsed-Beam Measurements of the Nuclear g Factors of the 2+ Rotational States in Neodymium-150, Dysprosium-162 and -164, Erbium-166, -168, and -170, and Tungsten-186

NUCLEAR REACTIONS 150Nd, 162,164Dy, 166,168,170Er, 186W(p, p'γ), E not given; measured pγ(θ, H, t). 150Nd, 162,164Dy, 166,168,170Er, 186W levels deduced T1/2, g. Pulsed beam technique.

doi: 10.1103/PhysRev.161.1185


1968MU01

Z.Physik 208, 184 (1968)

E.Munck

Messung der Magnetischen Momente der Tiefsten 2-zustande fur Einige Dy-, Er- und Yb-Isotope

NUCLEAR REACTIONS 164Dy, 164,166,168Er, 170,172,174Yb(γ, γ), E=73-92 keV; measured Mossbauer effect. 164Dy, 164,166,168Er, 170,172,174Yb levels deduced g.


1969AV01

Nucl.Phys. A127, 412 (1969)

R.Avida, Y.Dar, P.Gilad, M.B.Goldberg, K.H.Speidel, Y.Wolfson

Lifetime Measurements Following Coulomb Excitation

NUCLEAR REACTIONS 158Gd, 160Gd, 164Dy, 170Er(16O, 16O'γ), E=30 MeV; measured 16O'γ-delay. 158Gd, 160Gd, 164Dy, 170Er levels deduced T1/2.

doi: 10.1016/0375-9474(69)90581-8


1970BE36

Nucl.Phys. A151, 401 (1970); G.Goldring - Priv.Comm. (April 1972)

I.Ben-Zvi, P.Gilad, M.B.Goldberg, G.Goldring, K.-H.Speidel, A.Sprinzak

Hyperfine Interaction Studies of Heavy Nuclei in Highly Ionized Atoms

NUCLEAR REACTIONS 148Nd, 150Sm, 152,154,156,158,160Gd, 160,162,164Dy, 168,170Er, 172,174Yb, 178Hf, 182,186W, 188,190Os(16O, 16O'γ), 186W(35Cl, 35Cl'γ), E ≈ 36 MeV; measured σ(θ(γ), pressure). 154Gd(16O, 16O'γ), E ≈ 36 MeV; measured σ(θ(γ), H). 152Gd(α, α'), E=10 MeV; measured σ(Eα'); deduced B(E2). 152Gd level deduced T1/2. 148Nd, 150Sm, 152,154,156,158,160Gd, 160,162,164Dy, 168,170Er, 172,174Yb, 178Hf, 182,186W, 188,190Os deduced g for 2+ levels. Enriched targets.

doi: 10.1016/0375-9474(70)90289-7


1970HI03

Phys.Rev. C1, 1184 (1970)

D.Hitlin, S.Bernow, S.Devons, I.Duerdoth, J.W.Kast, E.R.Macagno, J.Rainwater, C.S.Wu, R.C.Barrett

Muonic Atoms. I. Dynamic Hyperfine Structure in the Spectra of Deformed Nuclei

ATOMIC PHYSICS, Mesic-Atoms 150Nd, 152Sm, 162,164Dy, 168,170Er, 182,184,186W; measured μ-mesic X-ray spectra; deduced isotope shift, nuclear charge distributions.

doi: 10.1103/PhysRevC.1.1184


1971SU01

J.Phys.Soc.Jap. 30, 602 (1971)

Y.Sugiyama, J.Kokame, T.Seuhiro, Y.Saji, H.Ogata, A.Stricker, I.Nonaka, Y.Ishizaki

The (p, t) Reaction on Even-Even Deformed Nuclei

NUCLEAR REACTIONS 158Gd, 164Dy, 172Yb, 176Hf, 184W(p, t), E=51.7 MeV; measured σ(Et, θ). 158Gd, 164Dy, 172Yb, 176Hf, 184W deduced deformation parameters β4.


1972BA08

Can.J.Phys. 50, 34 (1972)

R.C.Barber, R.L.Bishop, J.O.Meredith, F.C.G.Southon, P.Williams, H.E.Duckworth, P.Van Rookhuyzen

Precise Atomic-Mass Differences in the Region 59 < Z < 69

ATOMIC MASSES 142,144,146,148,150Nd, 150Sm, 144,148,150,152,154Sm, 154Gd, 152,154,156,158,160Gd, 160Dy, 156,158,160,162,164Dy, 162,164,166,168,170Er, 141Pr, 143,145,147Nd, 147,149Sm, 151,153Eu, 155,157Gd, 159Tb, 161,163Dy, 165Ho, 167Er, 169Tm, 167Er; measured mass differences.


1972ER04

Phys.Rev.Lett. 29, 1010 (1972)

K.A.Erb, J.E.Holden, I.Y.Lee, J.X.Saladin, T.K.Saylor

Quadrupole and Hexadecapole Deformations in Rare-Earth Nuclei

NUCLEAR REACTIONS 158,160Gd, 162,164Dy, 166,168,170Er(α, α), (α, α'), E=11-13 MeV; measured σ ratios. 158,160Gd, 162,164Dy , 166,168,170Er deduced B(E2), B(E4), β(L).

doi: 10.1103/PhysRevLett.29.1010


1973GR05

Priv.Comm. (March 1973); See Also 72GrYQ

J.S.Greenberg


1974SH12

Phys.Rev. C10, 263 (1974)

A.H.Shaw, J.S.Greenberg

Electric Moments and Charge Deformation in Even Rare-Earth Nuclei

NUCLEAR REACTIONS 152,154Sm, 158,160Gd, 164Dy, 166,168Er, 174Yb(α, α'), E=8-17 MeV; measured σ(E, Eα'). 152,154Sm, 158,160Gd, 164Dy, 166,168Er, 174Yb deduced B(E2), B(E4), β2, β4.

doi: 10.1103/PhysRevC.10.263


1974WO01

Phys.Lett. 48B, 323 (1974)

H.J.Wollersheim, W.Wilcke, T.W.Elze, D.Pelte

Hexadecapole Moments Obtained by Semiclassical and Quantum Mechanical Analyses of Coulomb Excitation

NUCLEAR REACTIONS 152,154Sm, 158Gd, 164Dy, 166Er(α, α'), E=12 MeV; measured σ(Eα'). 152,154Sm, 158Gd, 164Dy, 166Er deduced matrix elements M(E2), M(E4).

doi: 10.1016/0370-2693(74)90600-5


1983SE09

Nucl.Phys. A399, 211 (1983)

G.Seiler-Clark, D.Pelte, H.Emling, A.Balanda, H.Grein, E.Grosse, R.Kulessa, D.Schwalm, H.J.Wollersheim, M.Hass, G.J.Kumbartzki, K.-H.Speidel

Magnetic Moments in the Backbending Region of 158Dy

NUCLEAR REACTIONS 158,164Dy(208Pb, 208Pb'), E=4.7 MeV/nucleon; measured γ(θ, B), Coulomb excitation. 158,164Dy levels deduced γ. Enriched targets, transient field, thin magnetized Fe foil.

doi: 10.1016/0375-9474(83)90604-8


1984BO43

Phys.Lett. 148B, 260 (1984)

D.Bohle, G.Kuchler, A.Richter, W.Steffen

Further Evidence for the New Collective Magnetic Dipole Mode in Heavy Deformed Nuclei

NUCLEAR REACTIONS 154Sm, 164Dy, 168Er, 174Yb(e, e'), E=29 MeV; measured σ(E(e'), θ=165°), from factors, B(M1).

doi: 10.1016/0370-2693(84)90084-4


1987BO49

Z.Phys. A328, 463 (1987)

D.Bohle, A.Richter, C.W.de Jager, H.de Vries

Search for Collective M3 Excitations to Low Lying States in 164Dy

NUCLEAR REACTIONS 164Dy(e, e'), E=62 MeV; measured σ(E(e')), θ=165°. 164Dy levels deduced B(M3), transverse form factor, F-scalar magnetic octupole g-factor.


1989DO12

Phys.Rev. C40, 2035 (1989)

C.E.Doran, A.E.Stuchbery, H.H.Bolotin, A.P.Byrne, G.J.Lampard

Gyromagnetic Ratios in 164Dy and 168Er

NUCLEAR REACTIONS 168Er, 164Dy(58Ni, 58Ni'), E=150, 160, 220 MeV; measured γ(58Ni)-coin, γγ(θ, H). 164Dy, 168Er deduced levels, relative g factors.

NUCLEAR STRUCTURE 164Dy, 166,168Er; calculated levels, g. Semi-empirical aligned quasiparticle model.

doi: 10.1103/PhysRevC.40.2035


1989FR03

Phys.Lett. 218B, 439 (1989)

D.Frekers, D.Bohle, A.Richter, R.Abegg, R.E.Azuma, A.Celler, C.Chan, T.E.Drake, K.P.Jackson, J.D.King, C.A.Miller, R.Schubank, J.Watson, S.Yen

Spin Response of Magnetic Dipole Transitions in 156Gd and 164Dy

NUCLEAR REACTIONS 164Dy, 156Gd(p, p'), E=200 MeV; measured σ(θ), σ(Ep). 164Dy deduced magnetic dipole transition spin response, B(M1). 156Gd deduced magnetic dipole transition spin response.

doi: 10.1016/0370-2693(89)91443-3


1989GU17

Nucl.Phys. A501, 95 (1989)

T.Guhr, K.-D.Hummel, G.Kilgus, D.Bohle, A.Richter, C.W.de Jager, H.de Vries, P.K.A.de Witt Huberts

On the Nature of Low-Lying Electric Dipole Excitations in Light and Heavy Deformed Nuclei

NUCLEAR REACTIONS 48Ti, 164Dy, 232Th, 238U(e, e'), E=20-220 MeV; measured σ(E(e')). 48Ti, 164Dy, 232Th, 238U deduced levels, J, π, B(E1), transition form factors.

doi: 10.1016/0375-9474(89)90566-6


1993FR04

Nucl.Phys. A554, 333 (1993)

S.J.Freeman, R.Chapman, J.L.Durell, M.A.C.Hotchkis, F.Khazaie, J.C.Lisle, J.N.Mo, A.M.Bruce, R.A.Cunningham, P.V.Drumm, D.D.Warner, J.D.Garrett

Two-Quasiproton Configurations in Dysprosium-164

NUCLEAR REACTIONS 165Ho(t, α), E=37.3 MeV; measured σ(θ). 164Dy deduced levels, transferred proton L, Nilsson assignments, J, π, K, configuration strengths. Natural targets.

doi: 10.1016/0375-9474(93)90225-M


1995JO20

Phys.Rev. C52, 2382 (1995)

E.L.Johnson, E.M.Baum, D.P.DiPrete, R.A.Gatenby, T.Belgya, D.Wang, J.R.Vanhoy, M.T.McEllistrem, S.W.Yates

Lifetime Measurements of Scissors Mode Excitations in 162,164Dy

NUCLEAR REACTIONS 162,164Dy(n, n'γ), E=2.2-3.6 MeV; measured Eγ, Iγ, Iγ(θ), Doppler shift. 162,164Dy deduced levels, J, branching ratios, T1/2, B(M1), scissors mode states.

doi: 10.1103/PhysRevC.52.2382


1997AL25

Hyperfine Interactions 110, 313 (1997)

I.Alfter, E.Bodenstedt, W.Knichel, J.Schuth, H.Grawe

Observation of a Long Relaxation Time of the Hyperfine Field of Dy and Er After Recoil Implantation in Iron and Derivation of g-Factors of Rotational States in 164Er and 164Dy

NUCLEAR REACTIONS 162,164Dy, 164,166Er(58Ni, 58Ni'), E=220 MeV; measured γγ(θ, H) following Coulomb excitation;deduced hfs relaxation time in Fe backing. 164Er, 164Dy deduced g-factors.

doi: 10.1023/A:1012604322747


1997CO18

Phys.Rev. C56, R1201 (1997)

F.Corminboeuf, J.Jolie, H.Lehmann, K.Fohl, F.Hoyler, H.G.Borner, C.Doll, P.E.Garrett

K(π) = 4+ Double-γ Vibration in 164Dy

NUCLEAR REACTIONS 163Dy(n, γ), E=reactor; measured Eγ, Iγ, γγ-coin, I(ce). 164Dy level deduced J, π, K, T1/2, B(E2). Gamma-ray induced Doppler broadening technique. Two-phonon vibration.

doi: 10.1103/PhysRevC.56.R1201


1998LE03

Phys.Rev. C57, 569 (1998)

H.Lehmann, J.Jolie, F.Corminboeuf, H.G.Borner, C.Doll, M.Jentschel, R.F.Casten, N.V.Zamfir

Lifetimes of the Lowest 2+(K(π) = 0+) Levels in 168Er and 164Dy

NUCLEAR REACTIONS 167Er, 163Dy(n, γ), E=reactor; measured Eγ, Iγ. 168Er, 164Dy deduced levels T1/2, B(E2)B(M1), excited K(π)=0+ band configurations. Gamma-ray induced Doppler broadening technique. Several models compared.

doi: 10.1103/PhysRevC.57.569


1999AN42

Eur.Phys.J. D 7, 139 (1999)

B.K.Ankush, A.Venugopalan, S.A.Ahmad

Isotope Shift Studies in the First Spectrum of Dysprosium: Confirmation of assignments to 4f105d6p and New Assignments to 4f95d6s6p configuration

NUCLEAR MOMENTS 160,164Dy; measured isotope shifts.


1999BR43

Eur.Phys.J. A 6, 149 (1999)

F.Brandolini, M.De Poli, P.Pavan, R.V.Ribas, D.Bazzacco, C.R.Rossi-Alvarez

g-Factors in the Ground State and the γ-Bands in 160, 162, 164Dy

NUCLEAR REACTIONS 160,162,164Dy(58Ni, 58Ni'), E ≈ 220 MeV; measured Eγ, Iγ(θ, H) following Coulomb excitation. 160,162,164Dy deduced g-factors for ground-state band, vibrational bands transitions. Transient field technique.

doi: 10.1007/s100500050329


1999LE18

J.Phys.(London) G25, 827 (1999)

H.Lehmann, H.G.Borner, R.F.Casten, F.Corminboeuf, C.Doll, M.Jentschel, J.Jolie, N.V.Zamfir

On the Importance of the SU(3) Description for the Interpretation of the First Excited Kπ = 0+ Band in Deformed Nuclei

NUCLEAR STRUCTURE 164Dy, 168Er; analyzed levels T1/2; deduced excitation modes for excited 0+ bands.

doi: 10.1088/0954-3899/25/4/047


1999VE06

Nucl.Phys. A653, 355 (1999)

V.Velazquez, J.G.Hirsch, Y.Sun, M.W.Guidry

Backbending in Dy Isotopes within the Projected Shell Model

NUCLEAR STRUCTURE 154,156,158,160,162,164Dy; calculated rotational bands quadrupole moments, B(E2), g-factors; deduced deformation. Projected shell model, comparisons with data.

doi: 10.1016/S0375-9474(99)00238-9


2000GA53

Phys.Rev. C62, 064309 (2000)

J.E.Garcia-Ramos, J.M.Arias, P.Van Isacker

Anharmonic Double-Phonon Excitations in the Interacting Boson Model

NUCLEAR STRUCTURE 164Dy, 166,168Er; calculated levels, J, π, B(E2), vibrational bands features; deduced mechanism for anharmonicity. Interacting boson model.

doi: 10.1103/PhysRevC.62.064309


2000LE04

Phys.Rev. C61, 024305 (2000)

A.Leviatan, J.N.Ginocchio

F Spin as a Partial Symmetry

NUCLEAR STRUCTURE 148,150Nd, 148,150,154Sm, 154,160Gd, 160,162,164Dy, 166,168,170Er, 172,174Yb; analyzed levels, B(M1); deduced F-spin symmetry. Scissors modes, IBM-2 Hamiltonians.

doi: 10.1103/PhysRevC.61.024305


2001FA07

Chin.Phys.Lett. 18, 193 (2001)

X.-Z.Fang, T.-N.Ruan

Analysis of the Yrast Bands with q-Deformed Moment of Inertia

NUCLEAR STRUCTURE 156Gd, 162,164Dy, 164,166Er, 168,170,172,174,176Yb, 170,172,174,176,178Hf, 228,230,232Th, 236,238U, 236,238,240,242,244Pu, 248Cm; calculated yrast rotational band parameters. Comparisons with data.

doi: 10.1088/0256-307X/18/2/313


2001GA02

J.Phys.(London) G27, R1 (2001)

P.E.Garrett

Characterization of the β Vibration and 02+ States in Deformed Nuclei

NUCLEAR STRUCTURE 152,154Sm, 154,156,158,160Gd, 156,158,160,162,164Dy, 162,164,166,168,170Er, 168,170,172,174,176Yb, 174,176,178,180Hf, 180,182,184,186W; analyzed excited 0+ state energies, β-vibrational bands, transitions B(E2), related data. IBM and quasiparticle-phonon model calculations.

doi: 10.1088/0954-3899/27/1/201


2002GE10

Czech.J.Phys. 52, 705 (2002)

M.Gerceklioglu

A Study of the 156, 158, 160, 162, 164, 166Dy Isotopes

NUCLEAR STRUCTURE 156,158,160,162,164,166Dy; calculated 0+ states energies, B(E2), monopole transition strengths. Pairing-plus-quadrupole model, RPA.

doi: 10.1023/A:1015534812537


2002SU07

Phys.Lett. 533B, 253 (2002)

Y.Sun, J.A.Sheikh, G.-L.Long

Nuclear Magnetic Dipole Properties and the Triaxial Deformation

NUCLEAR STRUCTURE 154,156,158,160,162,164,166Dy, 156,158,160,162,164,166,168Er; calculated rotational bands energy vs spin, g-factors; deduced role of triaxial deformation. Triaxial projected shell model approach, comparison with data.

doi: 10.1016/S0370-2693(02)01625-8


2002YA17

Part. and Nucl., Lett. 112, 66 (2002)

H.L.Yadav, M.Kaushik, I.R.Jakhar, A.Ansari

g Factors as a Probe for High-Spin Structure of Neutron-Rich Dy Isotopes

NUCLEAR STRUCTURE 164,166,168,170Dy; calculated rotational bands deformation parameters, pair gaps, related features. 160,162,164,166,168,170Dy; calculated rotational bands g factors vs angular momentum. Cranked mean-field approach, comparison with data.


2003IA03

Phys.Rev.Lett. 91, 132502 (2003)

F.Iachello

Phase Transitions in Angle Variables

NUCLEAR STRUCTURE 166,168Er, 164Dy; analyzed one- and two-phonon vibrational states features, possible phase transitions in angle variables. Interacting boson model.

doi: 10.1103/PhysRevLett.91.132502


2003RA44

Phys.Rev. C 68, 044315 (2003)

A.K.Rath, P.D.Stevenson, P.H.Regan, F.R.Xu, P.M.Walker

Self-consistent description of dysprosium isotopes in the doubly midshell region

NUCLEAR STRUCTURE 160,162,164,166,168,170,172,174,176,178,180Dy; calculated binding energies, quadrupole deformations. 170Dy; calculated levels, J, π, configurations, rotational band features. Density-dependent Hartree-Fock approach, angular-momentum projection.

doi: 10.1103/PhysRevC.68.044315


2004MC06

Phys.Rev. C 69, 064306 (2004)

E.A.McCutchan, N.V.Zamfir, R.F.Casten

Mapping the interacting boson approximation symmetry triangle: New trajectories of structural evolution of rare-earth nuclei

NUCLEAR STRUCTURE 150,152,154,156,158,160,162Gd, 152,154,156,158,160,162,164Dy, 154,156,158,160,162,164,166,168Er, 156,158,160,162,164,166,168,170,172Yb, 160,162,164,166,168,170,172,174,176Hf; calculated level energies, B(E2), isotope shifts, two-neutron separation energies, symmetry features. Interacting boson model, comparison with data.

doi: 10.1103/PhysRevC.69.064306


2004PO12

Phys.Rev. C 69, 064307 (2004)

G.Popa, A.Georgieva, J.P.Draayer

Systematics in the structure of low-lying, nonyrast bandhead configurations of strongly deformed nuclei

NUCLEAR STRUCTURE 152Nd, 156Sm, 160Gd, 164Dy, 168Er, 172Yb, 176Hf; calculated ground and excited states energies, configurations. Pseudo-SU(3) model, F-spin classification.

doi: 10.1103/PhysRevC.69.064307


2004VA30

Phys.Rev. C 70, 064320 (2004)

C.E.Vargas, J.G.Hirsch

Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes

NUCLEAR STRUCTURE 158,160,162,164Dy; calculated levels, J, π, rotational bands, B(E2). Pseudo-SU(3) model, comparison with data.

doi: 10.1103/PhysRevC.70.064320


2006JO12

Phys.Rev.C 74, 064307 (2006)

R.V.Jolos, P.von Brentano

Mass coefficient and Grodzins relation for the ground-state band and gamma band

NUCLEAR STRUCTURE 156,158,160Gd, 158,160,164Dy, 162,164,166,168Er, 168,170Yb; analyzed ground-state band and γ-band level energies, B(E2), K-mixing parameters, mass coefficients.

doi: 10.1103/PhysRevC.74.064307


2007BO46

Phys.Rev. C 76, 064312 (2007)

D.Bonatsos, E.A.McCutchan, N.Minkov, R.F.Casten, P.Yotov, D.Lenis, D.Petrellis, I.Yigitoglu

Exactly separable version of the Bohr Hamiltonian with the Davidson potential

NUCLEAR STRUCTURE 154Sm, 156,158,160,162Gd, 158,160,162,164,166Dy, 160,162,164,166,168,170Er, 164,166,168,170,172,174,176,178Yb, 168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 180,182,184,186,188Os, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf; calculated excitation energy ratios, angular momenta, B(E2) ratios, bandhead energies, deformation parameters using Bohr Hamiltonian with Davidson Potential, compared with experimental values.

doi: 10.1103/PhysRevC.76.064312


2007DU21

Pramana 68, 1013 (2007)

A.Dua, A.Bharti, S.K.Khosa

A microscopic study of deformation systematics in 154-166Dy isotopes

NUCLEAR STRUCTURE 154,156,158,160,162,164,166Dy; calculated intrinsic quadrupole moments, low lying yrast states, and occupation numbers for shell model orbits using the HFB framework.


2007SH17

Phys.Rev. C 75, 047304 (2007)

S.F.Shen, Y.B.Chen, F.R.Xu, S.J.Zheng, B.Tang, T.D.Wen

Signature for rotational to vibrational evolution along the yrast line

NUCLEAR STRUCTURE 102Ru, 156Gd; calculated total Routhian surfaces. 156,158,160,162Gd, 158,160,162,164Dy, 174,176,178,180Hf, 236,238,240,242Pu; analyzed rotational band transition energies. Evolution of collective motion discussed.

doi: 10.1103/PhysRevC.75.047304


2008KI07

Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)

T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.

Evaluation of theoretical conversion coefficients using BrIcc

COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.

doi: 10.1016/j.nima.2008.02.051


2009AN12

J.Phys.(London) G36, 085102 (2009)

I.Angeli, Y.P.Gangrsky, K.P.Marinova, I.N.Boboshin, S.Yu.Komarov, B.S.Ishkhanov, V.V.Varlamov

N and Z dependence of nuclear charge radii

NUCLEAR STRUCTURE Z=1-96; analyzed trends in nucleon dependence of rms charge radii.

doi: 10.1088/0954-3899/36/8/085102


2010GO09

Phys.Rev. C 81, 054606 (2010)

B.L.Goldblum, S.G.Prussin, L.A.Bernstein, W.Younes, M.Guttormsen, H.T.Nyhus

Surrogate ratio methodology for the indirect determination of neutron capture cross sections

NUCLEAR REACTIONS 161,162,163Dy(3He, 3He'), (3He, α), E=45 MeV; 164Dy(3He, 3He'), E=38 MeV; measured Eγ, Iγ. 160,161,163Dy(n, γ), E<600 keV; deduced σ using the external surrogate ratio method (SRM).

doi: 10.1103/PhysRevC.81.054606


2010NY01

Phys.Rev. C 81, 024325 (2010); Erratum Phys.Rev. C 82, 029909 (2010)

H.T.Nyhus, S.Siem, M.Guttormsen, A.C.Larsen, A.Burger, N.U.H.Syed, G.M.Tveten, A.Voinov

Radiative strength functions in 163, 164Dy

NUCLEAR REACTIONS 164Dy(3He, 3He'), (3He, α), E=38 MeV; measured continuum γ spectra, particle spectra, and (particle)γ-coin; deduced level density, radiative strength functions, contributions from giant dipole resonances, and integrated B(M1) strength of pygmy resonances.

doi: 10.1103/PhysRevC.81.024325


2010SO03

Phys.Rev. C 81, 034310 (2010)

P.-A.Soderstrom, J.Nyberg, P.H.Regan, A.Algora, G.de Angelis, S.F.Ashley, S.Aydin, D.Bazzacco, R.J.Casperson, W.N.Catford, J.Cederkall, R.Chapman, L.Corradi, C.Fahlander, E.Farnea, E.Fioretto, S.J.Freeman, A.Gadea, W.Gelletly, A.Gottardo, E.Grodner, C.Y.He, G.A.Jones, K.Keyes, M.Labiche, X.Liang, Z.Liu, S.Lunardi, N.Marginean, P.Mason, R.Menegazzo, D.Mengoni, G.Montagnoli, D.Napoli, J.Ollier, S.Pietri, Zs.Podolyak, G.Pollarolo, F.Recchia, E.Sahin, F.Scarlassara, R.Silvestri, J.F.Smith, K.-M.Spohr, S.J.Steer, A.M.Stefanini, S.Szilner, N.J.Thompson, G.M.Tveten, C.A.Ur, J.J.Valiente-Dobon, V.Werner, S.J.Williams, F.R.Xu, J.Y.Zhu

Spectroscopy of neutron-rich 168, 170Dy: Yrast band evolution close to the NpNn valence maximum

NUCLEAR REACTIONS 170Er(82Se, X)168Dy/170Dy, E=460 MeV; measured mass yields, distributions of product nuclei using PRISMA spectrometer, Eγ, Iγ, γγ-, (particle)γ-coin using CLARA HPGe array. 168Dy; deduced levels, J, π, rotational bands, moments of inertia. 170Dy; deduced 4+ to 2+ transition. 170Er; measured Eγ. Z=64-72, N=94-108; systematics of levels and moments of inertia for even-even isotopes, and total Routhian surface calculations. 81,82,83,84,85,86,87,88,89,90Kr, 162,163,164,165,166,167,168,169,170,171Dy; measured yields of complementary beam-like and target-like fragments through 2pxn channels.

doi: 10.1103/PhysRevC.81.034310


2010ZO01

Chin.Phys.Lett. 27, 012101 (2010)

W.-H.Zou, J.-Z.Gu

Yrast Properties of Dysprosium Isotopes in the Double Mid-Shell Region

NUCLEAR STRUCTURE 164,166,168,170,172,174Dy; calculated level energies, moment of inertia, yrast bands using projected shell model; deduced 170Dy back-bending. Comparison with experimental data.

doi: 10.1088/0256-307X/27/1/012101


2011EL08

Phys.Rev.Lett. 107, 152501 (2011)

S.Eliseev, C.Roux, K.Blaum, M.Block, C.Droese, F.Herfurth, M.Kretzschmar, M.I.Krivoruchenko, E.Minaya-Ramirez, Yu.N.Novikov, L.Schweikhard, V.M.Shabaev, F.Simkovic, I.I.Tupitsyn, K.Zuber, N.A.Zubova

Octupolar-Excitation Penning-Trap Mass Spectrometry for Q-Value Measurement of Double-Electron Capture in 164Er

ATOMIC MASSES 164Er, 164Dy; measured relative frequency deviations; deduced doublet mass ratio, Q-value. Penning trap.

doi: 10.1103/PhysRevLett.107.152501


2012NY01

Phys.Rev. C 85, 014323 (2012)

H.T.Nyhus, S.Siem, M.Guttormsen, A.C.Larsen, A.Burger, N.U.H.Syed, H.K.Toft, G.M.Tveten, A.Voinov

Level density and thermodynamic properties of dysprosium isotopes

NUCLEAR REACTIONS 164Dy(3He, α), (3He, 3He'), E=38 MeV; measured particle spectra, Eγ, Iγ, γγ-coin, primary continuum γ spectra. 163Dy, 164Dy; deduced level density, γ-ray transmission coefficient, micro-canonical entropies, average temperature, heat capacity. Oslo method. Comparison with Fermi gas model calculations.

doi: 10.1103/PhysRevC.85.014323


2013AN02

At.Data Nucl.Data Tables 99, 69 (2013)

I.Angeli, K.P.Marinova

Table of experimental nuclear ground state charge radii: An update

COMPILATION Z=0-96; compiled nuclear radii, rms nuclear charge radii.

doi: 10.1016/j.adt.2011.12.006


2013CH33

Phys.Rev. C 88, 014315 (2013)

F.-Q.Chen, Y.Sun, P.Ring

Quantum fluctuations in the collective 0+ states of deformed nuclei

NUCLEAR STRUCTURE 154,156,158,160,162Gd, 156,158,160,162,164Dy, 158,160,162,164,166Er; calculated energies of 2+, 4+ and 6+ members of ground bands, first excited 0+, probability functions of deformation for ground and first excited 0+ states, E0-matrix elements for 0+ to 0+ and 2+ to 2+ transitions. Extension of the original projected shell model (PSM). Comparison with experimental data.

doi: 10.1103/PhysRevC.88.014315


2013VA03

Eur.Phys.J. A 49, 4 (2013)

C.E.Vargas, V.Velazquez, S.Lerma

Microscopic study of neutron-rich dysprosium isotopes

NUCLEAR STRUCTURE 160,162,164,166,168,170Dy; calculated levels, J, π, rotational bands, B(E2) using pseudo-SU(3) model with symmetry preserving QQ term and symmetry breaking Nilsson and pairing terms. Compared to data.

doi: 10.1140/epja/i2013-13004-1


2014STZZ

REPT INDC(NDS)-0658 (2014)

N.J.Stone

Table of nuclear magnetic dipole and electric quadrupole moments

COMPILATION Z=0-99; A=1-254; compiled μ, electric quadrupole moments, J, π, T1/2, experimental methods.


2015BA20

Phys.Rev. C 91, 064615 (2015)

J.S.Barrett, W.Loveland, R.Yanez, S.Zhu, A.D.Ayangeakaa, M.P.Carpenter, J.P.Greene, R.V.F.Janssens, T.Lauritsen, E.A.McCutchan, A.A.Sonzogni, C.J.Chiara, J.L.Harker, W.B.Walters

136Xe+208Pb reaction: A test of models of multinucleon transfer reactions

NUCLEAR REACTIONS 208Pb(136Xe, X), E=85 MeV; measured Eγ, Iγ, γγ-coin using Gammasphere at ATLAS-ANL facility, σ for projectile-like fragments (PLFs) and target-like fragments (TLFs) by off-line γ-ray spectroscopy for radioactive decay measurements (RD), prompt γ decays recorded during the beam burst (IB), and delayed γ decays recorded between the beam bursts (OB). 116,118Cd, 119,121In, 118,120,122,123,124,126Sn, 119,121,123,125,126,127,128,130Sb, 124,126,128,130,131,132,134Te, 127,128,129,130,131,132,133,135,136I, 128,130,132Xe, 133,134,135,136,137,138Xe, 131,132,133,134,136,137,139,141Cs, 130Ba, 132,134,136,138,139,140,141,142,143Ba, 132,135,136,137,139,140,143La, 136,138,139,140,141,142,143,144,145,146Ce, 139,141,142Pr, 140,142,143,144,145,146,147,148,149Nd, 142,143,145,147,149Pm, 145,146,147,148,149,150,151,152,154Sm, 147,149,151Eu, 152,154,156Gd, 156,158,160,162,164Dy, 160,161Er, 176Yb, 176,178,180,181,182Hf, 179,181Ta, 176,180,182,184,186,187W, 179,185,187Re, 186,188,190,191,192,194,197Os, 188,190,192Ir, 190,191,192,194,196,197,198,200,201,202Pt, 191,192,193,194,196,198,199Au, 194,196,198,200,202,203,204,205,206,208Hg, 196,197,198,199,201,202,203,204,205,206,207Tl, 198,201,202,203,204,206,207,208,209,210,211Pb, 199,201,202,203,204,205,206,207,209,211Bi, 202,204,205,206,207,208,209,210,212,213,214Po, 207,208,209,210,211,213At, 210,211,212,213,214,215,216,218Rn, 211,212,213,215,216Fr, 214Ra; deduced projectile-like fragment cumulative and independent production yields. Comparison with predictions of GRAZING model, and those of Zagrebaev and Greiner model using a quantitative metric. Discussed correlations between TLF and PLF yields.

doi: 10.1103/PhysRevC.91.064615


2015BU12

Eur.Phys.J. A 51, 126 (2015)

R.Budaca, A.I.Budaca

Competing γ-rigid and γ-stable vibrations in neutron-rich Gd and Dy isotopes

NUCLEAR STRUCTURE 158,160,162Gd, 160,162,164Dy; calculated levels, J, π, deformation, rotational bands, B(E2), coupling between two types of collective motion, rigidity parameter using exactly separable version of Bohr Hamiltonian. Compared with data.

doi: 10.1140/epja/i2015-15126-8


2016NE06

Phys.Rev. C 93, 034301 (2016)

V.O.Nesterenko, V.G.Kartavenko, W.Kleinig, J.Kvasil, A.Repko, R.V.Jolos, P.-G.Reinhard

Skyrme random-phase-approximation description of lowest Kπ = 2+γ states in axially deformed nuclei

NUCLEAR STRUCTURE 150,152Nd, 152,154,156Sm, 154,156,158,160Gd, 158,160,162,164,166Dy, 162,164,166,168,170Er, 168,170,172,174,176Yb, 168,170,172,174,176,178,180Hf, 178,180,182,184,186W, 232,234,236,238U; calculated energies and B(E2) of the lowest quadrupole γ-vibrational Kπ=2+ states in axially deformed rare-earth and uranium even-even nuclei. 152Nd, 164Dy, 172Yb, 238U; calculated isoscalar strength function for the ISGQR. Separable random-phase-approximation (SRPA) method based on the Skyrme functional with the Skyrme forces SV-bas and SkM*, and corrected by using pairing blocking effect. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.034301


2016PR01

At.Data Nucl.Data Tables 107, 1 (2016), Erratum At.Data Nucl.Data Tables 114, 371 (2017)

B.Pritychenko, M.Birch, B.Singh, M.Horoi

Tables of E2 transition probabilities from the first 2+ states in even-even nuclei

COMPILATION 4,6,8,10He, 6,8,10,12,14Be, 10,12,14,16,18,20C, 12,14,16,18,20,22,24,26O, 16,18,20,22,24,26,28,30,32Ne, 20,22,24,26,28,30,32,34,36,38Mg, 24,26,28,30,32,34,36,38,40,42Si, 28,30,32,34,36,38,40,42,44,46S, 32,34,36,38,40,42,44,46,48Ar, 36,38,40,42,44,46,48,50,52,54Ca, 42,44,46,48,50,52,54,56,58Ti, 46,48,50,52,54,56,58,60,62,64Cr, 48,50,52,54,56,58,60,62,64,66,68Fe, 52,54,56,58,60,62,64,66,68,70,72,74,76Ni, 60,62,64,66,68,70,72,74,76,78,80Zn, 62,64,66,68,70,72,74,76,78,80,82,84,86Ge, 66,68,70,72,74,76,78,80,82,84,86Se, 72,74,76,78,80,82,84,86,88,90,92,94,96Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108Zr, 84,86,88,90,92,94,96,98,100,102,104,106,108,110Mo, 88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Ru, 92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128Pd, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Cd, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Te, 110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Xe, 118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Ba, 122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152Ce, 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156Nd, 130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160Sm, 138,140,142,144,146,148,150,152,154,156,158,160,162,164Gd, 140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Dy, 144Er, 148,150,152,154,156,158,160,162,164,166,168,170,172,174Er, 152,154,156,158,160,162,164,166,168,170,172,174,176,178Yb, 160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192W, 162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198Os, 168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204Pt, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210Hg, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 206,208,210,212,214,216,218,220,222,224,226,228,230,232Ra, 214,216,218,220,222,224,226,228,230,232,234,236Th, 226,228,230,232,234,236,238,240,242U, 236,238,240,242,244,246Pu, 238,240,242,244,246,248,250Cm, 244,246,248,250,252Cf, 246,248Fm, 252,254,256Fm, 252,254No, 256Rf; compiled evaluated B(E2) values, T1/2, deformation parameters, first 2+ state energies in even-even nuclei.

NUCLEAR STRUCTURE 6He, 10,12Be, 10,12,14,16,18,20C, 16,18,20,22O, 18,20,22,24,26,28,30Ne, 20,22,24,26,28,30,32,34Mg, 24,26,28,30,32,34,36,38,40Si, 30,32,34,36,38,40,42,44S, 32,34,36,38,40,42,44,46Ar, 38,40,42Ca, 46,48,50Ca, 42,44,46,48,50,52,54,56Ti, 46,48,50,52,54,56,58,60,62Cr, 50,52,54,56,58,60,62,64,66Fe, 54,56,58,60,62,64,66,68,70,72,74,76Ni, 62,64,66,68,70,72,74,76,78Zn, 104,106Sn; calculated transition energies, B(E2). Nuclear shell model.

doi: 10.1016/j.adt.2015.10.001


2016QI06

Phys.Rev. C 94, 024301 (2016)

Z.Z.Qin, Y.Lei, S.Pittel

Global correlations between electromagnetic and spectroscopic properties of collective 2+1 and 2+2 states

NUCLEAR STRUCTURE 80Kr, 86Sr, 92Zr, 132Xe, 150,152Sm, 160,162,164Dy, 166,168Er, 184,186W, 188,190,192Os, 192,194,196,198Pt; A=10-240; analyzed systematic correlations between excitation energies, magnetic and quadrupole moments, and E2 collectivity for the lowest two 2+ states in even-even nuclei across the whole chart of nuclides, with experimental data taken from the ENSDF database. Triaxial rotor (TRM) and anharmonic-vibrator (AHV) model analysis.

doi: 10.1103/PhysRevC.94.024301


2016SH11

Phys.Rev. C 93, 044317 (2016)

M.Shimada, S.Tagami, Y.R.Shimizu

Realistic description of rotational bands in rare earth nuclei by the angular-momentum-projected multicranked configuration-mixing method

NUCLEAR STRUCTURE 156,158,160Gd, 158,162,164Dy, 160,162,164Er, 164,168,170Yb; calculated nuclear radii, deformation parameters β2 and β4, average pairing gaps for neutrons and protons for ground states in rare earth nuclei, levels, J, π, moment of inertia for ground-state rotational bands, detailed study of characteristics of the s-band in 164Er. Angular-momentum-projected multicranked configuration-mixing method with Gogny D1S force as effective interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.93.044317


2016ST14

At.Data Nucl.Data Tables 111-112, 1 (2016)

N.J.Stone

Table of nuclear electric quadrupole moments

COMPILATION Z=1-99; compiled experimental values of nuclear electric quadrupole moments.

doi: 10.1016/j.adt.2015.12.002


2017GO07

Phys.Atomic Nuclei 80, 1 (2017); Yad.Fiz. 80, 2 (2017)

L.I.Govor, A.M.Demidov, V.A.Kurkin, I.V.Mikhailov

Level structure of 164Dy from the (n, n'γ) reaction

NUCLEAR REACTIONS 164Dy(n, n'), E fast; measured reaction products, Eγ, Iγ; deduced γ-ray energies and intensities, angular distributions of gamma rays with respect to the neutron-beam axis, J, π, level scheme, rotational bands. The IR-8 reactor at the National Research Center Kurchatov Institute.

doi: 10.1134/S1063778816050082


2017VA08

Eur.Phys.J. A 53, 73 (2017)

C.E.Vargas, V.Velazquez, S.Lerma-Hernandez, N.Bagatella-Flores

Electromagnetic properties in 160-170Dy nuclei: A microscopic description by the pseudo- SU(3) shell model

NUCLEAR STRUCTURE 160,162,164,166,168,170Dy; calculated inter-band B(E2), B(M1), quadrupole moment, g-factor using pseudo-SU(3) including pseudo-spin 0 and 1 states. Compared with available data.

doi: 10.1140/epja/i2017-12264-y


2017WA10

Chin.Phys.C 41, 030003 (2017)

M.Wang, G.Audi, F.G.Kondev, W.J.Huang, S.Naimi, X.Xu

The AME2016 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses data.

doi: 10.1088/1674-1137/41/3/030003