References quoted in the ENSDF dataset: 164DY ADOPTED LEVELS, GAMMAS
67 references found.
Clicking on a keynumber will list datasets that reference the given article.
Kgl.Danske Videnskab.Selskab, Mat.-Fys.Medd. 30, No.17 (1956)
T.Huus, J.H.Bjerregaard, B.Elbek
Measurement of Conversion Electrons from Coulomb Excitation of the Elements in the Rare Earth Region
Phys.Rev. 116, 730 (1959)
M.Birk, G.Goldring, Y.Wolfson
Lifetime of 2+ Rotational States
Nuclear Phys. 19, 523 (1960)
B.Elbek, M.C.Olesen, O.Skilbreid
Inelastic Scattering from Even Rare Earth Isotopes
NUCLEAR STRUCTURE 154Sm, 150Sm, 152Sm, 160Gd, 160Dy, 156Gd, 158Gd, 162Dy, 154Gd, 166Er, 170Er, 168Er, 164Er, 164Dy, 174Yb, 170Yb, 172Yb, 176Yb, 148Sm; measured not abstracted; deduced nuclear properties.
doi: 10.1016/0029-5582(60)90262-5
Phys.Rev. 161, 1185 (1967); R.P.Scharenberg - Priv.Comm. (April 1972)
J.D.Kurfess, R.P.Scharenberg
Pulsed-Beam Measurements of the Nuclear g Factors of the 2+ Rotational States in Neodymium-150, Dysprosium-162 and -164, Erbium-166, -168, and -170, and Tungsten-186
NUCLEAR REACTIONS 150Nd, 162,164Dy, 166,168,170Er, 186W(p, p'γ), E not given; measured pγ(θ, H, t). 150Nd, 162,164Dy, 166,168,170Er, 186W levels deduced T1/2, g. Pulsed beam technique.
Z.Physik 208, 184 (1968)
E.Munck
Messung der Magnetischen Momente der Tiefsten 2-zustande fur Einige Dy-, Er- und Yb-Isotope
NUCLEAR REACTIONS 164Dy, 164,166,168Er, 170,172,174Yb(γ, γ), E=73-92 keV; measured Mossbauer effect. 164Dy, 164,166,168Er, 170,172,174Yb levels deduced g.
Nucl.Phys. A127, 412 (1969)
R.Avida, Y.Dar, P.Gilad, M.B.Goldberg, K.H.Speidel, Y.Wolfson
Lifetime Measurements Following Coulomb Excitation
NUCLEAR REACTIONS 158Gd, 160Gd, 164Dy, 170Er(16O, 16O'γ), E=30 MeV; measured 16O'γ-delay. 158Gd, 160Gd, 164Dy, 170Er levels deduced T1/2.
doi: 10.1016/0375-9474(69)90581-8
Nucl.Phys. A151, 401 (1970); G.Goldring - Priv.Comm. (April 1972)
I.Ben-Zvi, P.Gilad, M.B.Goldberg, G.Goldring, K.-H.Speidel, A.Sprinzak
Hyperfine Interaction Studies of Heavy Nuclei in Highly Ionized Atoms
NUCLEAR REACTIONS 148Nd, 150Sm, 152,154,156,158,160Gd, 160,162,164Dy, 168,170Er, 172,174Yb, 178Hf, 182,186W, 188,190Os(16O, 16O'γ), 186W(35Cl, 35Cl'γ), E ≈ 36 MeV; measured σ(θ(γ), pressure). 154Gd(16O, 16O'γ), E ≈ 36 MeV; measured σ(θ(γ), H). 152Gd(α, α'), E=10 MeV; measured σ(Eα'); deduced B(E2). 152Gd level deduced T1/2. 148Nd, 150Sm, 152,154,156,158,160Gd, 160,162,164Dy, 168,170Er, 172,174Yb, 178Hf, 182,186W, 188,190Os deduced g for 2+ levels. Enriched targets.
doi: 10.1016/0375-9474(70)90289-7
Phys.Rev. C1, 1184 (1970)
D.Hitlin, S.Bernow, S.Devons, I.Duerdoth, J.W.Kast, E.R.Macagno, J.Rainwater, C.S.Wu, R.C.Barrett
Muonic Atoms. I. Dynamic Hyperfine Structure in the Spectra of Deformed Nuclei
ATOMIC PHYSICS, Mesic-Atoms 150Nd, 152Sm, 162,164Dy, 168,170Er, 182,184,186W; measured μ-mesic X-ray spectra; deduced isotope shift, nuclear charge distributions.
J.Phys.Soc.Jap. 30, 602 (1971)
Y.Sugiyama, J.Kokame, T.Seuhiro, Y.Saji, H.Ogata, A.Stricker, I.Nonaka, Y.Ishizaki
The (p, t) Reaction on Even-Even Deformed Nuclei
NUCLEAR REACTIONS 158Gd, 164Dy, 172Yb, 176Hf, 184W(p, t), E=51.7 MeV; measured σ(Et, θ). 158Gd, 164Dy, 172Yb, 176Hf, 184W deduced deformation parameters β4.
Can.J.Phys. 50, 34 (1972)
R.C.Barber, R.L.Bishop, J.O.Meredith, F.C.G.Southon, P.Williams, H.E.Duckworth, P.Van Rookhuyzen
Precise Atomic-Mass Differences in the Region 59 < Z < 69
ATOMIC MASSES 142,144,146,148,150Nd, 150Sm, 144,148,150,152,154Sm, 154Gd, 152,154,156,158,160Gd, 160Dy, 156,158,160,162,164Dy, 162,164,166,168,170Er, 141Pr, 143,145,147Nd, 147,149Sm, 151,153Eu, 155,157Gd, 159Tb, 161,163Dy, 165Ho, 167Er, 169Tm, 167Er; measured mass differences.
Phys.Rev.Lett. 29, 1010 (1972)
K.A.Erb, J.E.Holden, I.Y.Lee, J.X.Saladin, T.K.Saylor
Quadrupole and Hexadecapole Deformations in Rare-Earth Nuclei
NUCLEAR REACTIONS 158,160Gd, 162,164Dy, 166,168,170Er(α, α), (α, α'), E=11-13 MeV; measured σ ratios. 158,160Gd, 162,164Dy , 166,168,170Er deduced B(E2), B(E4), β(L).
doi: 10.1103/PhysRevLett.29.1010
Priv.Comm. (March 1973); See Also 72GrYQ
J.S.Greenberg
Phys.Rev. C10, 263 (1974)
A.H.Shaw, J.S.Greenberg
Electric Moments and Charge Deformation in Even Rare-Earth Nuclei
NUCLEAR REACTIONS 152,154Sm, 158,160Gd, 164Dy, 166,168Er, 174Yb(α, α'), E=8-17 MeV; measured σ(E, Eα'). 152,154Sm, 158,160Gd, 164Dy, 166,168Er, 174Yb deduced B(E2), B(E4), β2, β4.
Phys.Lett. 48B, 323 (1974)
H.J.Wollersheim, W.Wilcke, T.W.Elze, D.Pelte
Hexadecapole Moments Obtained by Semiclassical and Quantum Mechanical Analyses of Coulomb Excitation
NUCLEAR REACTIONS 152,154Sm, 158Gd, 164Dy, 166Er(α, α'), E=12 MeV; measured σ(Eα'). 152,154Sm, 158Gd, 164Dy, 166Er deduced matrix elements M(E2), M(E4).
doi: 10.1016/0370-2693(74)90600-5
Nucl.Phys. A399, 211 (1983)
G.Seiler-Clark, D.Pelte, H.Emling, A.Balanda, H.Grein, E.Grosse, R.Kulessa, D.Schwalm, H.J.Wollersheim, M.Hass, G.J.Kumbartzki, K.-H.Speidel
Magnetic Moments in the Backbending Region of 158Dy
NUCLEAR REACTIONS 158,164Dy(208Pb, 208Pb'), E=4.7 MeV/nucleon; measured γ(θ, B), Coulomb excitation. 158,164Dy levels deduced γ. Enriched targets, transient field, thin magnetized Fe foil.
doi: 10.1016/0375-9474(83)90604-8
Phys.Lett. 148B, 260 (1984)
D.Bohle, G.Kuchler, A.Richter, W.Steffen
Further Evidence for the New Collective Magnetic Dipole Mode in Heavy Deformed Nuclei
NUCLEAR REACTIONS 154Sm, 164Dy, 168Er, 174Yb(e, e'), E=29 MeV; measured σ(E(e'), θ=165°), from factors, B(M1).
doi: 10.1016/0370-2693(84)90084-4
Z.Phys. A328, 463 (1987)
D.Bohle, A.Richter, C.W.de Jager, H.de Vries
Search for Collective M3 Excitations to Low Lying States in 164Dy
NUCLEAR REACTIONS 164Dy(e, e'), E=62 MeV; measured σ(E(e')), θ=165°. 164Dy levels deduced B(M3), transverse form factor, F-scalar magnetic octupole g-factor.
Phys.Rev. C40, 2035 (1989)
C.E.Doran, A.E.Stuchbery, H.H.Bolotin, A.P.Byrne, G.J.Lampard
Gyromagnetic Ratios in 164Dy and 168Er
NUCLEAR REACTIONS 168Er, 164Dy(58Ni, 58Ni'), E=150, 160, 220 MeV; measured γ(58Ni)-coin, γγ(θ, H). 164Dy, 168Er deduced levels, relative g factors.
NUCLEAR STRUCTURE 164Dy, 166,168Er; calculated levels, g. Semi-empirical aligned quasiparticle model.
Phys.Lett. 218B, 439 (1989)
D.Frekers, D.Bohle, A.Richter, R.Abegg, R.E.Azuma, A.Celler, C.Chan, T.E.Drake, K.P.Jackson, J.D.King, C.A.Miller, R.Schubank, J.Watson, S.Yen
Spin Response of Magnetic Dipole Transitions in 156Gd and 164Dy
NUCLEAR REACTIONS 164Dy, 156Gd(p, p'), E=200 MeV; measured σ(θ), σ(Ep). 164Dy deduced magnetic dipole transition spin response, B(M1). 156Gd deduced magnetic dipole transition spin response.
doi: 10.1016/0370-2693(89)91443-3
Nucl.Phys. A501, 95 (1989)
T.Guhr, K.-D.Hummel, G.Kilgus, D.Bohle, A.Richter, C.W.de Jager, H.de Vries, P.K.A.de Witt Huberts
On the Nature of Low-Lying Electric Dipole Excitations in Light and Heavy Deformed Nuclei
NUCLEAR REACTIONS 48Ti, 164Dy, 232Th, 238U(e, e'), E=20-220 MeV; measured σ(E(e')). 48Ti, 164Dy, 232Th, 238U deduced levels, J, π, B(E1), transition form factors.
doi: 10.1016/0375-9474(89)90566-6
Nucl.Phys. A554, 333 (1993)
S.J.Freeman, R.Chapman, J.L.Durell, M.A.C.Hotchkis, F.Khazaie, J.C.Lisle, J.N.Mo, A.M.Bruce, R.A.Cunningham, P.V.Drumm, D.D.Warner, J.D.Garrett
Two-Quasiproton Configurations in Dysprosium-164
NUCLEAR REACTIONS 165Ho(t, α), E=37.3 MeV; measured σ(θ). 164Dy deduced levels, transferred proton L, Nilsson assignments, J, π, K, configuration strengths. Natural targets.
doi: 10.1016/0375-9474(93)90225-M
Phys.Rev. C52, 2382 (1995)
E.L.Johnson, E.M.Baum, D.P.DiPrete, R.A.Gatenby, T.Belgya, D.Wang, J.R.Vanhoy, M.T.McEllistrem, S.W.Yates
Lifetime Measurements of Scissors Mode Excitations in 162,164Dy
NUCLEAR REACTIONS 162,164Dy(n, n'γ), E=2.2-3.6 MeV; measured Eγ, Iγ, Iγ(θ), Doppler shift. 162,164Dy deduced levels, J, branching ratios, T1/2, B(M1), scissors mode states.
Hyperfine Interactions 110, 313 (1997)
I.Alfter, E.Bodenstedt, W.Knichel, J.Schuth, H.Grawe
Observation of a Long Relaxation Time of the Hyperfine Field of Dy and Er After Recoil Implantation in Iron and Derivation of g-Factors of Rotational States in 164Er and 164Dy
NUCLEAR REACTIONS 162,164Dy, 164,166Er(58Ni, 58Ni'), E=220 MeV; measured γγ(θ, H) following Coulomb excitation;deduced hfs relaxation time in Fe backing. 164Er, 164Dy deduced g-factors.
Phys.Rev. C56, R1201 (1997)
F.Corminboeuf, J.Jolie, H.Lehmann, K.Fohl, F.Hoyler, H.G.Borner, C.Doll, P.E.Garrett
K(π) = 4+ Double-γ Vibration in 164Dy
NUCLEAR REACTIONS 163Dy(n, γ), E=reactor; measured Eγ, Iγ, γγ-coin, I(ce). 164Dy level deduced J, π, K, T1/2, B(E2). Gamma-ray induced Doppler broadening technique. Two-phonon vibration.
doi: 10.1103/PhysRevC.56.R1201
Phys.Rev. C57, 569 (1998)
H.Lehmann, J.Jolie, F.Corminboeuf, H.G.Borner, C.Doll, M.Jentschel, R.F.Casten, N.V.Zamfir
Lifetimes of the Lowest 2+(K(π) = 0+) Levels in 168Er and 164Dy
NUCLEAR REACTIONS 167Er, 163Dy(n, γ), E=reactor; measured Eγ, Iγ. 168Er, 164Dy deduced levels T1/2, B(E2)B(M1), excited K(π)=0+ band configurations. Gamma-ray induced Doppler broadening technique. Several models compared.
Eur.Phys.J. D 7, 139 (1999)
B.K.Ankush, A.Venugopalan, S.A.Ahmad
Isotope Shift Studies in the First Spectrum of Dysprosium: Confirmation of assignments to 4f105d6p and New Assignments to 4f95d6s6p configuration
NUCLEAR MOMENTS 160,164Dy; measured isotope shifts.
Eur.Phys.J. A 6, 149 (1999)
F.Brandolini, M.De Poli, P.Pavan, R.V.Ribas, D.Bazzacco, C.R.Rossi-Alvarez
g-Factors in the Ground State and the γ-Bands in 160, 162, 164Dy
NUCLEAR REACTIONS 160,162,164Dy(58Ni, 58Ni'), E ≈ 220 MeV; measured Eγ, Iγ(θ, H) following Coulomb excitation. 160,162,164Dy deduced g-factors for ground-state band, vibrational bands transitions. Transient field technique.
J.Phys.(London) G25, 827 (1999)
H.Lehmann, H.G.Borner, R.F.Casten, F.Corminboeuf, C.Doll, M.Jentschel, J.Jolie, N.V.Zamfir
On the Importance of the SU(3) Description for the Interpretation of the First Excited Kπ = 0+ Band in Deformed Nuclei
NUCLEAR STRUCTURE 164Dy, 168Er; analyzed levels T1/2; deduced excitation modes for excited 0+ bands.
doi: 10.1088/0954-3899/25/4/047
Nucl.Phys. A653, 355 (1999)
V.Velazquez, J.G.Hirsch, Y.Sun, M.W.Guidry
Backbending in Dy Isotopes within the Projected Shell Model
NUCLEAR STRUCTURE 154,156,158,160,162,164Dy; calculated rotational bands quadrupole moments, B(E2), g-factors; deduced deformation. Projected shell model, comparisons with data.
doi: 10.1016/S0375-9474(99)00238-9
Phys.Rev. C62, 064309 (2000)
J.E.Garcia-Ramos, J.M.Arias, P.Van Isacker
Anharmonic Double-Phonon Excitations in the Interacting Boson Model
NUCLEAR STRUCTURE 164Dy, 166,168Er; calculated levels, J, π, B(E2), vibrational bands features; deduced mechanism for anharmonicity. Interacting boson model.
doi: 10.1103/PhysRevC.62.064309
Phys.Rev. C61, 024305 (2000)
A.Leviatan, J.N.Ginocchio
F Spin as a Partial Symmetry
NUCLEAR STRUCTURE 148,150Nd, 148,150,154Sm, 154,160Gd, 160,162,164Dy, 166,168,170Er, 172,174Yb; analyzed levels, B(M1); deduced F-spin symmetry. Scissors modes, IBM-2 Hamiltonians.
doi: 10.1103/PhysRevC.61.024305
Chin.Phys.Lett. 18, 193 (2001)
X.-Z.Fang, T.-N.Ruan
Analysis of the Yrast Bands with q-Deformed Moment of Inertia
NUCLEAR STRUCTURE 156Gd, 162,164Dy, 164,166Er, 168,170,172,174,176Yb, 170,172,174,176,178Hf, 228,230,232Th, 236,238U, 236,238,240,242,244Pu, 248Cm; calculated yrast rotational band parameters. Comparisons with data.
doi: 10.1088/0256-307X/18/2/313
J.Phys.(London) G27, R1 (2001)
P.E.Garrett
Characterization of the β Vibration and 02+ States in Deformed Nuclei
NUCLEAR STRUCTURE 152,154Sm, 154,156,158,160Gd, 156,158,160,162,164Dy, 162,164,166,168,170Er, 168,170,172,174,176Yb, 174,176,178,180Hf, 180,182,184,186W; analyzed excited 0+ state energies, β-vibrational bands, transitions B(E2), related data. IBM and quasiparticle-phonon model calculations.
doi: 10.1088/0954-3899/27/1/201
Czech.J.Phys. 52, 705 (2002)
M.Gerceklioglu
A Study of the 156, 158, 160, 162, 164, 166Dy Isotopes
NUCLEAR STRUCTURE 156,158,160,162,164,166Dy; calculated 0+ states energies, B(E2), monopole transition strengths. Pairing-plus-quadrupole model, RPA.
Phys.Lett. 533B, 253 (2002)
Y.Sun, J.A.Sheikh, G.-L.Long
Nuclear Magnetic Dipole Properties and the Triaxial Deformation
NUCLEAR STRUCTURE 154,156,158,160,162,164,166Dy, 156,158,160,162,164,166,168Er; calculated rotational bands energy vs spin, g-factors; deduced role of triaxial deformation. Triaxial projected shell model approach, comparison with data.
doi: 10.1016/S0370-2693(02)01625-8
Part. and Nucl., Lett. 112, 66 (2002)
H.L.Yadav, M.Kaushik, I.R.Jakhar, A.Ansari
g Factors as a Probe for High-Spin Structure of Neutron-Rich Dy Isotopes
NUCLEAR STRUCTURE 164,166,168,170Dy; calculated rotational bands deformation parameters, pair gaps, related features. 160,162,164,166,168,170Dy; calculated rotational bands g factors vs angular momentum. Cranked mean-field approach, comparison with data.
Phys.Rev.Lett. 91, 132502 (2003)
F.Iachello
Phase Transitions in Angle Variables
NUCLEAR STRUCTURE 166,168Er, 164Dy; analyzed one- and two-phonon vibrational states features, possible phase transitions in angle variables. Interacting boson model.
doi: 10.1103/PhysRevLett.91.132502
Phys.Rev. C 68, 044315 (2003)
A.K.Rath, P.D.Stevenson, P.H.Regan, F.R.Xu, P.M.Walker
Self-consistent description of dysprosium isotopes in the doubly midshell region
NUCLEAR STRUCTURE 160,162,164,166,168,170,172,174,176,178,180Dy; calculated binding energies, quadrupole deformations. 170Dy; calculated levels, J, π, configurations, rotational band features. Density-dependent Hartree-Fock approach, angular-momentum projection.
doi: 10.1103/PhysRevC.68.044315
Phys.Rev. C 69, 064306 (2004)
E.A.McCutchan, N.V.Zamfir, R.F.Casten
Mapping the interacting boson approximation symmetry triangle: New trajectories of structural evolution of rare-earth nuclei
NUCLEAR STRUCTURE 150,152,154,156,158,160,162Gd, 152,154,156,158,160,162,164Dy, 154,156,158,160,162,164,166,168Er, 156,158,160,162,164,166,168,170,172Yb, 160,162,164,166,168,170,172,174,176Hf; calculated level energies, B(E2), isotope shifts, two-neutron separation energies, symmetry features. Interacting boson model, comparison with data.
doi: 10.1103/PhysRevC.69.064306
Phys.Rev. C 69, 064307 (2004)
G.Popa, A.Georgieva, J.P.Draayer
Systematics in the structure of low-lying, nonyrast bandhead configurations of strongly deformed nuclei
NUCLEAR STRUCTURE 152Nd, 156Sm, 160Gd, 164Dy, 168Er, 172Yb, 176Hf; calculated ground and excited states energies, configurations. Pseudo-SU(3) model, F-spin classification.
doi: 10.1103/PhysRevC.69.064307
Phys.Rev. C 70, 064320 (2004)
C.E.Vargas, J.G.Hirsch
Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes
NUCLEAR STRUCTURE 158,160,162,164Dy; calculated levels, J, π, rotational bands, B(E2). Pseudo-SU(3) model, comparison with data.
doi: 10.1103/PhysRevC.70.064320
Phys.Rev.C 74, 064307 (2006)
R.V.Jolos, P.von Brentano
Mass coefficient and Grodzins relation for the ground-state band and gamma band
NUCLEAR STRUCTURE 156,158,160Gd, 158,160,164Dy, 162,164,166,168Er, 168,170Yb; analyzed ground-state band and γ-band level energies, B(E2), K-mixing parameters, mass coefficients.
doi: 10.1103/PhysRevC.74.064307
Phys.Rev. C 76, 064312 (2007)
D.Bonatsos, E.A.McCutchan, N.Minkov, R.F.Casten, P.Yotov, D.Lenis, D.Petrellis, I.Yigitoglu
Exactly separable version of the Bohr Hamiltonian with the Davidson potential
NUCLEAR STRUCTURE 154Sm, 156,158,160,162Gd, 158,160,162,164,166Dy, 160,162,164,166,168,170Er, 164,166,168,170,172,174,176,178Yb, 168,170,172,174,176,178,180Hf, 176,178,180,182,184,186W, 180,182,184,186,188Os, 228Ra, 228,230,232Th, 232,234,236,238U, 238,240,242Pu, 248Cm, 250Cf; calculated excitation energy ratios, angular momenta, B(E2) ratios, bandhead energies, deformation parameters using Bohr Hamiltonian with Davidson Potential, compared with experimental values.
doi: 10.1103/PhysRevC.76.064312
Pramana 68, 1013 (2007)
A.Dua, A.Bharti, S.K.Khosa
A microscopic study of deformation systematics in 154-166Dy isotopes
NUCLEAR STRUCTURE 154,156,158,160,162,164,166Dy; calculated intrinsic quadrupole moments, low lying yrast states, and occupation numbers for shell model orbits using the HFB framework.
Phys.Rev. C 75, 047304 (2007)
S.F.Shen, Y.B.Chen, F.R.Xu, S.J.Zheng, B.Tang, T.D.Wen
Signature for rotational to vibrational evolution along the yrast line
NUCLEAR STRUCTURE 102Ru, 156Gd; calculated total Routhian surfaces. 156,158,160,162Gd, 158,160,162,164Dy, 174,176,178,180Hf, 236,238,240,242Pu; analyzed rotational band transition energies. Evolution of collective motion discussed.
doi: 10.1103/PhysRevC.75.047304
Nucl.Instrum.Methods Phys.Res. A589, 202 (2008)
T.Kibedi, T.W.Burrows, M.B.Trzhaskovskaya, P.M.Davidson, C.W.Nestor, Jr.
Evaluation of theoretical conversion coefficients using BrIcc
COMPILATION Z=5-110; compiled and evaluated ICC data. BrICC database.
doi: 10.1016/j.nima.2008.02.051
J.Phys.(London) G36, 085102 (2009)
I.Angeli, Y.P.Gangrsky, K.P.Marinova, I.N.Boboshin, S.Yu.Komarov, B.S.Ishkhanov, V.V.Varlamov
N and Z dependence of nuclear charge radii
NUCLEAR STRUCTURE Z=1-96; analyzed trends in nucleon dependence of rms charge radii.
doi: 10.1088/0954-3899/36/8/085102
Phys.Rev. C 81, 054606 (2010)
B.L.Goldblum, S.G.Prussin, L.A.Bernstein, W.Younes, M.Guttormsen, H.T.Nyhus
Surrogate ratio methodology for the indirect determination of neutron capture cross sections
NUCLEAR REACTIONS 161,162,163Dy(3He, 3He'), (3He, α), E=45 MeV; 164Dy(3He, 3He'), E=38 MeV; measured Eγ, Iγ. 160,161,163Dy(n, γ), E<600 keV; deduced σ using the external surrogate ratio method (SRM).
doi: 10.1103/PhysRevC.81.054606
Phys.Rev. C 81, 024325 (2010); Erratum Phys.Rev. C 82, 029909 (2010)
H.T.Nyhus, S.Siem, M.Guttormsen, A.C.Larsen, A.Burger, N.U.H.Syed, G.M.Tveten, A.Voinov
Radiative strength functions in 163, 164Dy
NUCLEAR REACTIONS 164Dy(3He, 3He'), (3He, α), E=38 MeV; measured continuum γ spectra, particle spectra, and (particle)γ-coin; deduced level density, radiative strength functions, contributions from giant dipole resonances, and integrated B(M1) strength of pygmy resonances.
doi: 10.1103/PhysRevC.81.024325
Phys.Rev. C 81, 034310 (2010)
P.-A.Soderstrom, J.Nyberg, P.H.Regan, A.Algora, G.de Angelis, S.F.Ashley, S.Aydin, D.Bazzacco, R.J.Casperson, W.N.Catford, J.Cederkall, R.Chapman, L.Corradi, C.Fahlander, E.Farnea, E.Fioretto, S.J.Freeman, A.Gadea, W.Gelletly, A.Gottardo, E.Grodner, C.Y.He, G.A.Jones, K.Keyes, M.Labiche, X.Liang, Z.Liu, S.Lunardi, N.Marginean, P.Mason, R.Menegazzo, D.Mengoni, G.Montagnoli, D.Napoli, J.Ollier, S.Pietri, Zs.Podolyak, G.Pollarolo, F.Recchia, E.Sahin, F.Scarlassara, R.Silvestri, J.F.Smith, K.-M.Spohr, S.J.Steer, A.M.Stefanini, S.Szilner, N.J.Thompson, G.M.Tveten, C.A.Ur, J.J.Valiente-Dobon, V.Werner, S.J.Williams, F.R.Xu, J.Y.Zhu
Spectroscopy of neutron-rich 168, 170Dy: Yrast band evolution close to the NpNn valence maximum
NUCLEAR REACTIONS 170Er(82Se, X)168Dy/170Dy, E=460 MeV; measured mass yields, distributions of product nuclei using PRISMA spectrometer, Eγ, Iγ, γγ-, (particle)γ-coin using CLARA HPGe array. 168Dy; deduced levels, J, π, rotational bands, moments of inertia. 170Dy; deduced 4+ to 2+ transition. 170Er; measured Eγ. Z=64-72, N=94-108; systematics of levels and moments of inertia for even-even isotopes, and total Routhian surface calculations. 81,82,83,84,85,86,87,88,89,90Kr, 162,163,164,165,166,167,168,169,170,171Dy; measured yields of complementary beam-like and target-like fragments through 2pxn channels.
doi: 10.1103/PhysRevC.81.034310
Chin.Phys.Lett. 27, 012101 (2010)
W.-H.Zou, J.-Z.Gu
Yrast Properties of Dysprosium Isotopes in the Double Mid-Shell Region
NUCLEAR STRUCTURE 164,166,168,170,172,174Dy; calculated level energies, moment of inertia, yrast bands using projected shell model; deduced 170Dy back-bending. Comparison with experimental data.
doi: 10.1088/0256-307X/27/1/012101
Phys.Rev.Lett. 107, 152501 (2011)
S.Eliseev, C.Roux, K.Blaum, M.Block, C.Droese, F.Herfurth, M.Kretzschmar, M.I.Krivoruchenko, E.Minaya-Ramirez, Yu.N.Novikov, L.Schweikhard, V.M.Shabaev, F.Simkovic, I.I.Tupitsyn, K.Zuber, N.A.Zubova
Octupolar-Excitation Penning-Trap Mass Spectrometry for Q-Value Measurement of Double-Electron Capture in 164Er
ATOMIC MASSES 164Er, 164Dy; measured relative frequency deviations; deduced doublet mass ratio, Q-value. Penning trap.
doi: 10.1103/PhysRevLett.107.152501
Phys.Rev. C 85, 014323 (2012)
H.T.Nyhus, S.Siem, M.Guttormsen, A.C.Larsen, A.Burger, N.U.H.Syed, H.K.Toft, G.M.Tveten, A.Voinov
Level density and thermodynamic properties of dysprosium isotopes
NUCLEAR REACTIONS 164Dy(3He, α), (3He, 3He'), E=38 MeV; measured particle spectra, Eγ, Iγ, γγ-coin, primary continuum γ spectra. 163Dy, 164Dy; deduced level density, γ-ray transmission coefficient, micro-canonical entropies, average temperature, heat capacity. Oslo method. Comparison with Fermi gas model calculations.
doi: 10.1103/PhysRevC.85.014323
At.Data Nucl.Data Tables 99, 69 (2013)
I.Angeli, K.P.Marinova
Table of experimental nuclear ground state charge radii: An update
COMPILATION Z=0-96; compiled nuclear radii, rms nuclear charge radii.
doi: 10.1016/j.adt.2011.12.006
Phys.Rev. C 88, 014315 (2013)
F.-Q.Chen, Y.Sun, P.Ring
Quantum fluctuations in the collective 0+ states of deformed nuclei
NUCLEAR STRUCTURE 154,156,158,160,162Gd, 156,158,160,162,164Dy, 158,160,162,164,166Er; calculated energies of 2+, 4+ and 6+ members of ground bands, first excited 0+, probability functions of deformation for ground and first excited 0+ states, E0-matrix elements for 0+ to 0+ and 2+ to 2+ transitions. Extension of the original projected shell model (PSM). Comparison with experimental data.
doi: 10.1103/PhysRevC.88.014315
Eur.Phys.J. A 49, 4 (2013)
C.E.Vargas, V.Velazquez, S.Lerma
Microscopic study of neutron-rich dysprosium isotopes
NUCLEAR STRUCTURE 160,162,164,166,168,170Dy; calculated levels, J, π, rotational bands, B(E2) using pseudo-SU(3) model with symmetry preserving QQ term and symmetry breaking Nilsson and pairing terms. Compared to data.
doi: 10.1140/epja/i2013-13004-1
REPT INDC(NDS)-0658 (2014)
N.J.Stone
Table of nuclear magnetic dipole and electric quadrupole moments
COMPILATION Z=0-99; A=1-254; compiled μ, electric quadrupole moments, J, π, T1/2, experimental methods.
Phys.Rev. C 91, 064615 (2015)
J.S.Barrett, W.Loveland, R.Yanez, S.Zhu, A.D.Ayangeakaa, M.P.Carpenter, J.P.Greene, R.V.F.Janssens, T.Lauritsen, E.A.McCutchan, A.A.Sonzogni, C.J.Chiara, J.L.Harker, W.B.Walters
136Xe+208Pb reaction: A test of models of multinucleon transfer reactions
NUCLEAR REACTIONS 208Pb(136Xe, X), E=85 MeV; measured Eγ, Iγ, γγ-coin using Gammasphere at ATLAS-ANL facility, σ for projectile-like fragments (PLFs) and target-like fragments (TLFs) by off-line γ-ray spectroscopy for radioactive decay measurements (RD), prompt γ decays recorded during the beam burst (IB), and delayed γ decays recorded between the beam bursts (OB). 116,118Cd, 119,121In, 118,120,122,123,124,126Sn, 119,121,123,125,126,127,128,130Sb, 124,126,128,130,131,132,134Te, 127,128,129,130,131,132,133,135,136I, 128,130,132Xe, 133,134,135,136,137,138Xe, 131,132,133,134,136,137,139,141Cs, 130Ba, 132,134,136,138,139,140,141,142,143Ba, 132,135,136,137,139,140,143La, 136,138,139,140,141,142,143,144,145,146Ce, 139,141,142Pr, 140,142,143,144,145,146,147,148,149Nd, 142,143,145,147,149Pm, 145,146,147,148,149,150,151,152,154Sm, 147,149,151Eu, 152,154,156Gd, 156,158,160,162,164Dy, 160,161Er, 176Yb, 176,178,180,181,182Hf, 179,181Ta, 176,180,182,184,186,187W, 179,185,187Re, 186,188,190,191,192,194,197Os, 188,190,192Ir, 190,191,192,194,196,197,198,200,201,202Pt, 191,192,193,194,196,198,199Au, 194,196,198,200,202,203,204,205,206,208Hg, 196,197,198,199,201,202,203,204,205,206,207Tl, 198,201,202,203,204,206,207,208,209,210,211Pb, 199,201,202,203,204,205,206,207,209,211Bi, 202,204,205,206,207,208,209,210,212,213,214Po, 207,208,209,210,211,213At, 210,211,212,213,214,215,216,218Rn, 211,212,213,215,216Fr, 214Ra; deduced projectile-like fragment cumulative and independent production yields. Comparison with predictions of GRAZING model, and those of Zagrebaev and Greiner model using a quantitative metric. Discussed correlations between TLF and PLF yields.
doi: 10.1103/PhysRevC.91.064615
Eur.Phys.J. A 51, 126 (2015)
R.Budaca, A.I.Budaca
Competing γ-rigid and γ-stable vibrations in neutron-rich Gd and Dy isotopes
NUCLEAR STRUCTURE 158,160,162Gd, 160,162,164Dy; calculated levels, J, π, deformation, rotational bands, B(E2), coupling between two types of collective motion, rigidity parameter using exactly separable version of Bohr Hamiltonian. Compared with data.
doi: 10.1140/epja/i2015-15126-8
Phys.Rev. C 93, 034301 (2016)
V.O.Nesterenko, V.G.Kartavenko, W.Kleinig, J.Kvasil, A.Repko, R.V.Jolos, P.-G.Reinhard
Skyrme random-phase-approximation description of lowest Kπ = 2+γ states in axially deformed nuclei
NUCLEAR STRUCTURE 150,152Nd, 152,154,156Sm, 154,156,158,160Gd, 158,160,162,164,166Dy, 162,164,166,168,170Er, 168,170,172,174,176Yb, 168,170,172,174,176,178,180Hf, 178,180,182,184,186W, 232,234,236,238U; calculated energies and B(E2) of the lowest quadrupole γ-vibrational Kπ=2+ states in axially deformed rare-earth and uranium even-even nuclei. 152Nd, 164Dy, 172Yb, 238U; calculated isoscalar strength function for the ISGQR. Separable random-phase-approximation (SRPA) method based on the Skyrme functional with the Skyrme forces SV-bas and SkM*, and corrected by using pairing blocking effect. Comparison with experimental data.
doi: 10.1103/PhysRevC.93.034301
At.Data Nucl.Data Tables 107, 1 (2016), Erratum At.Data Nucl.Data Tables 114, 371 (2017)
B.Pritychenko, M.Birch, B.Singh, M.Horoi
Tables of E2 transition probabilities from the first 2+ states in even-even nuclei
COMPILATION 4,6,8,10He, 6,8,10,12,14Be, 10,12,14,16,18,20C, 12,14,16,18,20,22,24,26O, 16,18,20,22,24,26,28,30,32Ne, 20,22,24,26,28,30,32,34,36,38Mg, 24,26,28,30,32,34,36,38,40,42Si, 28,30,32,34,36,38,40,42,44,46S, 32,34,36,38,40,42,44,46,48Ar, 36,38,40,42,44,46,48,50,52,54Ca, 42,44,46,48,50,52,54,56,58Ti, 46,48,50,52,54,56,58,60,62,64Cr, 48,50,52,54,56,58,60,62,64,66,68Fe, 52,54,56,58,60,62,64,66,68,70,72,74,76Ni, 60,62,64,66,68,70,72,74,76,78,80Zn, 62,64,66,68,70,72,74,76,78,80,82,84,86Ge, 66,68,70,72,74,76,78,80,82,84,86Se, 72,74,76,78,80,82,84,86,88,90,92,94,96Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102Sr, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108Zr, 84,86,88,90,92,94,96,98,100,102,104,106,108,110Mo, 88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118Ru, 92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128Pd, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Cd, 102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Te, 110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Xe, 118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Ba, 122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152Ce, 128,130,132,134,136,138,140,142,144,146,148,150,152,154,156Nd, 130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160Sm, 138,140,142,144,146,148,150,152,154,156,158,160,162,164Gd, 140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Dy, 144Er, 148,150,152,154,156,158,160,162,164,166,168,170,172,174Er, 152,154,156,158,160,162,164,166,168,170,172,174,176,178Yb, 160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192W, 162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198Os, 168,170,172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204Pt, 172,174,176,178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210Hg, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 192,194,196,198,200,202,204,206,208,210,212,214,216,218Po, 198,200,202,204,206,208,210,212,214,216,218,220,222Rn, 206,208,210,212,214,216,218,220,222,224,226,228,230,232Ra, 214,216,218,220,222,224,226,228,230,232,234,236Th, 226,228,230,232,234,236,238,240,242U, 236,238,240,242,244,246Pu, 238,240,242,244,246,248,250Cm, 244,246,248,250,252Cf, 246,248Fm, 252,254,256Fm, 252,254No, 256Rf; compiled evaluated B(E2) values, T1/2, deformation parameters, first 2+ state energies in even-even nuclei.
NUCLEAR STRUCTURE 6He, 10,12Be, 10,12,14,16,18,20C, 16,18,20,22O, 18,20,22,24,26,28,30Ne, 20,22,24,26,28,30,32,34Mg, 24,26,28,30,32,34,36,38,40Si, 30,32,34,36,38,40,42,44S, 32,34,36,38,40,42,44,46Ar, 38,40,42Ca, 46,48,50Ca, 42,44,46,48,50,52,54,56Ti, 46,48,50,52,54,56,58,60,62Cr, 50,52,54,56,58,60,62,64,66Fe, 54,56,58,60,62,64,66,68,70,72,74,76Ni, 62,64,66,68,70,72,74,76,78Zn, 104,106Sn; calculated transition energies, B(E2). Nuclear shell model.
doi: 10.1016/j.adt.2015.10.001
Phys.Rev. C 94, 024301 (2016)
Z.Z.Qin, Y.Lei, S.Pittel
Global correlations between electromagnetic and spectroscopic properties of collective 2+1 and 2+2 states
NUCLEAR STRUCTURE 80Kr, 86Sr, 92Zr, 132Xe, 150,152Sm, 160,162,164Dy, 166,168Er, 184,186W, 188,190,192Os, 192,194,196,198Pt; A=10-240; analyzed systematic correlations between excitation energies, magnetic and quadrupole moments, and E2 collectivity for the lowest two 2+ states in even-even nuclei across the whole chart of nuclides, with experimental data taken from the ENSDF database. Triaxial rotor (TRM) and anharmonic-vibrator (AHV) model analysis.
doi: 10.1103/PhysRevC.94.024301
Phys.Rev. C 93, 044317 (2016)
M.Shimada, S.Tagami, Y.R.Shimizu
Realistic description of rotational bands in rare earth nuclei by the angular-momentum-projected multicranked configuration-mixing method
NUCLEAR STRUCTURE 156,158,160Gd, 158,162,164Dy, 160,162,164Er, 164,168,170Yb; calculated nuclear radii, deformation parameters β2 and β4, average pairing gaps for neutrons and protons for ground states in rare earth nuclei, levels, J, π, moment of inertia for ground-state rotational bands, detailed study of characteristics of the s-band in 164Er. Angular-momentum-projected multicranked configuration-mixing method with Gogny D1S force as effective interaction. Comparison with experimental data.
doi: 10.1103/PhysRevC.93.044317
At.Data Nucl.Data Tables 111-112, 1 (2016)
N.J.Stone
Table of nuclear electric quadrupole moments
COMPILATION Z=1-99; compiled experimental values of nuclear electric quadrupole moments.
doi: 10.1016/j.adt.2015.12.002
Phys.Atomic Nuclei 80, 1 (2017); Yad.Fiz. 80, 2 (2017)
L.I.Govor, A.M.Demidov, V.A.Kurkin, I.V.Mikhailov
Level structure of 164Dy from the (n, n'γ) reaction
NUCLEAR REACTIONS 164Dy(n, n'), E fast; measured reaction products, Eγ, Iγ; deduced γ-ray energies and intensities, angular distributions of gamma rays with respect to the neutron-beam axis, J, π, level scheme, rotational bands. The IR-8 reactor at the National Research Center Kurchatov Institute.
doi: 10.1134/S1063778816050082
Eur.Phys.J. A 53, 73 (2017)
C.E.Vargas, V.Velazquez, S.Lerma-Hernandez, N.Bagatella-Flores
Electromagnetic properties in 160-170Dy nuclei: A microscopic description by the pseudo- SU(3) shell model
NUCLEAR STRUCTURE 160,162,164,166,168,170Dy; calculated inter-band B(E2), B(M1), quadrupole moment, g-factor using pseudo-SU(3) including pseudo-spin 0 and 1 states. Compared with available data.
doi: 10.1140/epja/i2017-12264-y
Chin.Phys.C 41, 030003 (2017)
M.Wang, G.Audi, F.G.Kondev, W.J.Huang, S.Naimi, X.Xu
The AME2016 atomic mass evaluation (II). Tables, graphs and references
ATOMIC MASSES A=1-295; compiled, evaluated atomic masses data.
doi: 10.1088/1674-1137/41/3/030003