• Open Access

Decay spectroscopy of Os171,172 and Ir171,172,174

W. Zhang et al.
Phys. Rev. C 107, 014308 – Published 19 January 2023

Abstract

We report on a study of the α-decay fine structure and the associated EαEγ correlations in the decays of Os171,172 and Ir171,172,174. In total, 13 new α-decay energy lines have been resolved, and three new γ-ray transitions have been observed following the new decay branches to Re168 and W167. The weak α-decay branch from the bandhead of the νi13/2 band in Os171 observed in this work highlights an unusual competition between α, β, and electromagnetic decays from this isomeric state. The nucleus Os171 is therefore one of few nuclei observed to exhibit three different decay modes from the same excited state. The nuclei of interest were produced in Mo92(Kr83,xpyn) fusion-evaporation reactions at the Accelerator Laboratory of the University of Jyväskylä, Finland. The fusion products were selected using the gas-filled ion separator RITU and their decays were characterized using an array of detectors for charged particles and electromagnetic radiation known as GREAT. Prompt γ-ray transitions were detected and correlated with the decays using the JUROGAM II germanium detector array surrounding the target position. Results obtained from total Routhian surface (TRS) calculations suggest that α-decay fine structure and the associated hindrance factors may be a sensitive probe of even relatively small shape changes between the final states in the daughter nucleus.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 13 October 2022
  • Accepted 11 January 2023

DOI:https://doi.org/10.1103/PhysRevC.107.014308

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Nuclear Physics

Authors & Affiliations

Click to Expand

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 107, Iss. 1 — January 2023

Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review C

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×