We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Calculating the Octupole Deformation of Radium and Thorium Isotopes in a Hartree–Fock–Bogolyubov Approximation with Skryme Forces

  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

A Hartree–Fock–Bogolyubov approximation with Skyrme forces is used to estimate properties of Ra and Th isotopes with A = 218–230 and A = 280–290. The effect of pairing forces is estimated from values of the parameters of quadrupole and octupole nuclear deformation. The pairing of nucleons in nuclei is described by zero-range pairing forces. It is shown that the octupole deformation of nuclei depends strongly on the choice of parameters of the nucleon pairing force.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Solov’ev, V.G., Teoriya slozhnykh yader (Theory of Complex Nuclei), Moscow: Nauka, 1971.

  2. Bohr, A. and Mottelson, B.R., Nuclear Structure, New York: Benjamin, 1969, vol. 2.

    MATH  Google Scholar 

  3. Butler, P.A. and Nazarewicz, W., Rev. Mod. Phys., 1996, vol. 68, p. 349.

    Article  ADS  Google Scholar 

  4. Butler, P.A., J. Phys. G, 2016, vol. 43, 073002.

    Article  ADS  Google Scholar 

  5. Butler, P.A., Proc. R. Soc. A, 2020, vol. 476, 20200202.

    Article  ADS  Google Scholar 

  6. Bender, M., Heenen, P.-H., and Reinhard, P.-G., Rev. Mod. Phys., 2003, vol. 75, p. 121.

    Article  ADS  Google Scholar 

  7. Stoitsov, M.V., Dobaczewski, J., Nazarewicz, W., et al., Phys. Rev. C, 2003, vol. 68, 054312.

    Article  ADS  Google Scholar 

  8. Meng, J., Toki, H., Zhou, S.G., et al., Prog. Part. Nucl. Phys., 2006, vol. 57, p. 470.

    Article  ADS  Google Scholar 

  9. Vretenar, D. and Ring, P., Prog. Part. Nucl. Phys., 2011, vol. 66, p. 519.

    Article  ADS  Google Scholar 

  10. Agbemava, S.E., Afanasjev, A.V., Ray, D., and Ring, P., Phys. Rev. C, 2014, vol. 89, 054320.

    Article  ADS  Google Scholar 

  11. Agbemava, S.E., Afanasjev, A.V., and Ring, P., Phys. Rev. C, 2016, vol. 93, 044304.

    Article  ADS  Google Scholar 

  12. Agbemava, S.E. and Afanasjev, A.V., Phys. Rev. C, 2017, vol. 96, 024301.

    Article  ADS  Google Scholar 

  13. Robledo, L.M., Rodríiguez, T.R., and Rodríiuez-Guzmáan, R.R., J. Phys. G, 2019, vol. 46, 013001.

    Article  ADS  Google Scholar 

  14. Cao, Y., Agbemava, S.E., Afanasjev, A.V., et al., Phys. Rev. C, 2020, vol. 102, 024311.

    Article  ADS  Google Scholar 

  15. Chen, M., Li, T., Dobaczewski, J., and Nazarewicz, W., Phys. Rev. C, 2021, vol. 103, 034303.

    Article  ADS  Google Scholar 

  16. Stoitsov, M.V., Schunck, N., Kortelainen, M., et al., Comput. Phys. Commun., 2013, vol. 184, p. 1592.

    Article  ADS  Google Scholar 

  17. Bartel, J., Quentin, P., Brack, M., et al., Nucl. Phys. A, 1982, vol. 386, p. 79.

    Article  ADS  Google Scholar 

  18. Chabanat, E., Bonche, P., Haensel, P., et al., Nucl. Phys. A, 1998, vol. 635, p. 231.

    Article  ADS  Google Scholar 

  19. Dobaczewski, J., Nazarewicz, W., and Stoitsov, M.V., Eur. Phys. J. A, 2002, vol. 15, p. 21.

    Article  ADS  Google Scholar 

  20. Afanasjev, A.V., Agbemava, S.E., Ray, D., and Ring, P., Phys. Rev. C, 2015, vol. 91, 014324.

    Article  ADS  Google Scholar 

  21. Perez, R.N., Schunck, N., Lasseri, R.-D., et al., Comput. Phys. Commun., 2017, vol. 220, p. 363.

    Article  ADS  MathSciNet  Google Scholar 

  22. Olsen, E., Erler, J., Nazarewicz, W., and Stoitsov, M., J. Phys.: Conf. Ser., 2012, vol. 402.

  23. Li, J., Colò, G., and Meng, J., Phys. Rev. C, 2008, vol. 78, 064304.

    Article  ADS  Google Scholar 

  24. Stoitsov, M.V., Dobaczewski, J., Nazarewicz, W., and Ring, P., Comput. Phys. Commun., 2005, vol. 167, p. 43.

    Article  ADS  Google Scholar 

  25. Wang, M., Audi, G., Kondev, F.G., et al., Chin. Phys. C, 2017, vol. 41, 030003.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tarasov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Vetrov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.N., Kuprikov, V.I. & Tarasov, D.V. Calculating the Octupole Deformation of Radium and Thorium Isotopes in a Hartree–Fock–Bogolyubov Approximation with Skryme Forces. Bull. Russ. Acad. Sci. Phys. 86, 998–1004 (2022). https://doi.org/10.3103/S1062873822080226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1062873822080226

Navigation