Skip to main content
Log in

Excited states and staggering in \( \varvec{\gamma } \)-vibrational band built on the \( \mathbf {11/2^{-}[505]} \) orbital of \(\mathbf {^{~165}}\)Er

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

This article has been updated

Abstract

An extented Bohr Hamiltonian, by considering the Deformation-Dependent Mass Formalism with three different mass parameters one for each collective mode, is used to investigate the bands structure of the \(^{165}\)Er nucleus. By taking into account the Coriolis interaction, the staggering of \( \gamma \) band energy levels built on the \( 11/2^{-}[505] \) orbital obtained within this theoretical approach has a similar behavior to that observed from experiment. E2 transition probabilities are also predicted for a future experimental test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment: This is a theoretical study and no experimental data has been listed.]

Change history

  • 13 February 2022

    The original online version of this article was revised: The metadata details of author A. Ait Ben Hammou have been corrected.

References

  1. A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26, 1 (1952)

    Google Scholar 

  2. A. Bohr, B. R. Mottelson, Nuclear Structure Vol II: Nuclear Deformations (Benjamin, New York, 1975)

  3. F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987)

    Book  Google Scholar 

  4. L. Fortunato, Eur. Phys. J. A 26, 1 (2005)

    Article  ADS  Google Scholar 

  5. A. Ait Ben Hammou, M. Chabab, A. El Batoul, M. Hamzavi, A. Lahbas, I. Moumene, M. Oulne, Eur. Phys. J. Plus 134, 577 (2019)

    Article  Google Scholar 

  6. R.V. Jolos, P. von Brentano, Phys. Rev. C 74, 064307 (2006)

    Article  ADS  Google Scholar 

  7. R.V. Jolos, P. von Brentano, Phys. Rev. C 76, 024309 (2007)

    Article  ADS  Google Scholar 

  8. R.V. Jolos, P. von Brentano, Phys. Rev. C 77, 064317 (2008)

    Article  ADS  Google Scholar 

  9. R.V. Jolos, P. von Brentano, Phys. Rev. C 78, 064309 (2008)

    Article  ADS  Google Scholar 

  10. R.V. Jolos, P. von Brentano, Phys. Rev. C 79, 044310 (2009)

    Article  ADS  Google Scholar 

  11. D. Bonatsos, P.E. Georgoudis, D. Lenis, N. Minkov, C. Quesne, Phys. Rev. C 83, 044321 (2011)

    Article  ADS  Google Scholar 

  12. D. Bonatsos, P.E. Georgoudis, N. Minkov, D. Petrellis, C. Quesne, Phys. Rev. C 88, 034316 (2013)

    Article  ADS  Google Scholar 

  13. M. Chabab, A. Lahbas, M. Oulne, Phys. Rev. C 91, 095104 (2015)

    Article  Google Scholar 

  14. M. Chabab, A. El Batoul A, A. Lahbas, M. Oulne, J. Phys. G: Nucl. Part. Phys. 43, 125107 (2016)

  15. M. Chabab M, A. El Batoul, I. El-ilali, A. Lahbas, M. Oulne, Eur. Phys. J. Plus 135, 201 (2020)

    Article  Google Scholar 

  16. L. Wilets, M. Jean, Phys. Rev. 102, 788 (1956)

    Article  ADS  Google Scholar 

  17. A. Davydov, G. Filippov, Nucl. Phys. 8, 237 (1958)

    Article  Google Scholar 

  18. A. Davydov, A. Chaban, Nucl. Phys. 20, 499 (1960)

    Article  Google Scholar 

  19. M.J. Ermamatov, P.C. Srivastava, P.R. Fraser, P. Stránský, Eur. Phys. J. A 48, 123 (2012)

  20. A. Ait Ben Hammou, M. Oulne, J. Phys. G: Nucl. Part. Phys. 47, 115105 (2020)

    Article  ADS  Google Scholar 

  21. P.M. Davidson, Proc. R. Soc. Lond. Ser. A 135, 459 (1932)

    Article  ADS  Google Scholar 

  22. S.T. Wang et al., Phys. Rev. C 84, 017303 (2011)

    Article  ADS  Google Scholar 

  23. S.T. Wang et al., Phys. Rev. C 84, 037303 (2011)

    Article  ADS  Google Scholar 

  24. D.D. DiJulio et al., Eur. Phys. J. A 47, 25 (2011)

    Article  ADS  Google Scholar 

  25. A.S. Davydov, R.A. Sardaryan, Nucl. Phys. 37, 106 (1962)

    Article  Google Scholar 

  26. V.V. Pashkevich, R.A. Sardaryan, Nucl. Phys. 56, 401 (1965)

    Article  Google Scholar 

  27. M.J. Ermamatov, H. Yépez-Martínez, P.C. Srivastava, Pramana J. Phys. 86, 1055 (2016)

    Article  ADS  Google Scholar 

  28. A.S. Davydov, Excited States of Atomic Nuclei (Atomizdat, Moscow, 1967)

    Google Scholar 

  29. M.J. Ermamatov, P.C. Srivastava, P.R. Fraser, P. Stránský, I.O. Morales, Phys. Rev. C 85, 034307 (2012)

    Article  ADS  Google Scholar 

  30. R.B. Cakirli, K. Blaum, R.F. Casten, Phys. Rev. C 82, 061304 (2010)

    Article  ADS  Google Scholar 

  31. Nuclear Data Sheets http://www.nndc.bnl.gov/nndc/ensdf

  32. E.A. McCutchan, D. Bonatsos, N.V. Zamfir, R.F. Casten, Phys. Rev. C 76, 024306 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Oulne.

Additional information

Communicated by Dario Vretenar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ait Ben Hammou, A., Oulne, M. Excited states and staggering in \( \varvec{\gamma } \)-vibrational band built on the \( \mathbf {11/2^{-}[505]} \) orbital of \(\mathbf {^{~165}}\)Er. Eur. Phys. J. A 58, 19 (2022). https://doi.org/10.1140/epja/s10050-022-00675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-022-00675-0

Navigation