Skip to main content
Log in

Study of Octupole Deformation of Radium Isotopes in the Hartree–Fock–Bogoliubov Approximation with Skyrme Forces

  • Nuclei/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The change in the octupole deformation of nuclei in the chain of even–even radium isotopes is studied on the basis of the Hartree–Fock–Bogoliubov method with an effective Skyrme interaction. Nucleon pairing is described in terms of density-dependent zero-range pairing forces of mixed type. Conditions imposed on the quadrupole and octupole moments of nuclei were used in respective calculations. The dependence of the calculated features of nuclei on the choice of pairing forces is studied. The calculations show that there is a strong dependence of the octupole deformation of nuclei on the choice of parameters of nucleon-pairing forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. A. Bohr and B. Mottelson, Nuclear Structure, Vol. 2: Nuclear Deformations (Benjamin, New York, 1975).

    MATH  Google Scholar 

  2. V. G. Soloviev, Theory of Complex Nuclei (Nauka, Moscow, 1971; Pergamon, Oxford, 1976).

  3. P. A. Butler and W. Nazarewicz, Rev. Mod. Phys. 68, 349 (1996).

    Article  ADS  Google Scholar 

  4. P. A. Butler, J. Phys. G 43, 073002 (2016).

    Article  ADS  Google Scholar 

  5. P. A. Butler, Proc. R. Soc. London, Ser. A 476, 20200202 (2020).

    ADS  Google Scholar 

  6. M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  7. M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, S. Pittel, and D. J. Dean, Phys. Rev. C 68, 054312 (2003).

    Article  ADS  Google Scholar 

  8. J. Meng, H. Toki, S. G. Zhou, S. Q. Zhang, W. H. Long, and L. S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).

    Article  ADS  Google Scholar 

  9. T. Nikšić, D. Vretenar, and P. Ring, Prog. Part. Nucl. Phys. 66, 519 (2011).

    Article  ADS  Google Scholar 

  10. S. E. Agbemava, A. V. Afanasjev, D. Ray, and P. Ring, Phys. Rev. C 89, 054320 (2014).

    Article  ADS  Google Scholar 

  11. S. E. Agbemava, A. V. Afanasjev, and P. Ring, Phys. Rev. C 93, 044304 (2016).

    Article  ADS  Google Scholar 

  12. S. E. Agbemava and A. V. Afanasjev, Phys. Rev. C 96, 024301 (2017).

    Article  ADS  Google Scholar 

  13. L. M. Robledo, T. R. Rodríguez, and R. R. Rodríguez-Guzmán, J. Phys. G 46, 013001 (2019).

  14. Y. Cao, S. E. Agbemava, A. V. Afanasjev, W. Nazarewicz, and E. Olsen, Phys. Rev. C 102, 024311 (2020).

    Article  ADS  Google Scholar 

  15. M. Chen, T. Li, J. Dobaczewski, and W. Nazarewicz, Phys. Rev. C 103, 034303 (2021).

    Article  ADS  Google Scholar 

  16. M. V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184, 1592 (2013).

    Article  ADS  Google Scholar 

  17. J. Bartel, P. Quentin, M. Brack, C. Guet, and H.-B. Hekansson, Nucl. Phys. A 386, 79 (1982).

    Article  ADS  Google Scholar 

  18. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998);

    Article  ADS  Google Scholar 

  19. Nucl. Phys. A 643, 441(E) (1998).

  20. J. Dobaczewski, W. Nazarewicz, and M. V. Stoitsov, Eur. Phys. J. A 15, 21 (2002).

    Article  ADS  Google Scholar 

  21. A. V. Afanasjev, S. E. Agbemava, D. Ray, and P. Ring, Phys. Rev. C 91, 014324 (2015).

    Article  ADS  Google Scholar 

  22. R. N. Perez, N. Schunck, R.-D. Lasseri, C. Zhang, and J. Sarich, Comput. Phys. Commun. 220, 363 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Olsen, J. Erler, W. Nazarewicz, and M. Stoitsov, J. Phys.: Conf. Ser. 402, 012034 (2012).

    Google Scholar 

  24. J. Li, G. Colò, and J. Meng, Phys. Rev. C 78, 064304 (2008).

    Article  ADS  Google Scholar 

  25. M. V. Stoitsov, J. Dobaczewski, W. Nazarewicz, and P. Ring, Comput. Phys. Commun. 167, 43 (2005).

    Article  ADS  Google Scholar 

  26. Meng Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and Xing Xu, Chin. Phys. C 41, 030003 (2017).

    Article  ADS  Google Scholar 

  27. S. Ebata and T. Nakatsukasa, Phys. Scr. 92, 064005 (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Tarasov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuprikov, V.I., Tarasov, V.N. Study of Octupole Deformation of Radium Isotopes in the Hartree–Fock–Bogoliubov Approximation with Skyrme Forces. Phys. Atom. Nuclei 84, 796–803 (2021). https://doi.org/10.1134/S1063778821050094

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778821050094

Navigation