Skip to main content
Log in

Experimental Study of \(^{4}n\) by Directly Detecting the Decay Neutrons

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The tetraneutron has attracted the attention of nuclear physicists during the past decades, but there is still no unambiguous confirmation of its existence or non-existence. A new experiment based on \(^{8}\)He(p, 2p)\(^{7}\)H{t+\(^{4}n\)} reaction, with direct detection of the four neutrons, has been carried out at RIBF, which can hopefully help to draw a definite conclusion on the tetraneutron system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S. Roberts, J.W. Hessels, A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081–3 (2010)

    Article  ADS  Google Scholar 

  2. B.A. Brown, Neutron radii in nuclei and the neutron equation of state. Phys. Rev. Lett. 85, 5296–5299 (2000)

    Article  ADS  Google Scholar 

  3. F.M. Marqués, J. Carbonell, The quest for light multineutron systems. Eur. Phys. J. A 57, 105 (2021)

    Article  ADS  Google Scholar 

  4. K. Kisamori et al., Candidate resonant tetraneutron state populated by the \({}^{4}\)He(\({}^{8}\)He,\({}^{8}\)Be) reaction. Phys. Rev. Lett. 116, 052501 (2016)

    Article  ADS  Google Scholar 

  5. F.M. Marqués et al., Detection of neutron clusters. Phys. Rev. C 65, 044006 (2002)

    Article  ADS  Google Scholar 

  6. Marqués, F.M., et al., On the Possible Detection of \(^{4}\)n Events in the Breakup of \(^{14}\)Be (2005). arXiv:nucl-ex/0504009

  7. S.C. Pieper, Can modern nuclear hamiltonians tolerate a bound tetraneutron? Phys. Rev. Lett. 90, 252501 (2003)

    Article  ADS  Google Scholar 

  8. S. Gandolfi et al., Is a trineutron resonance lower in energy than a tetraneutron resonance? Phys. Rev. Lett. 118, 232501 (2017)

    Article  ADS  Google Scholar 

  9. A.M. Shirokov et al., Prediction for a four-neutron resonance. Phys. Rev. Lett. 117, 182502 (2016)

    Article  ADS  Google Scholar 

  10. K. Fossez et al., Can tetraneutron be a narrow resonance? Phys. Rev. Lett. 119, 032501 (2017)

    Article  ADS  Google Scholar 

  11. J.G. Li et al., Ab initio no-core Gamow shell-model calculations of multineutron systems. Phys. Rev. C 100, 054313 (2019)

    Article  ADS  Google Scholar 

  12. R. Lazauskas, J. Carbonell, Is a physically observable tetraneutron resonance compatible with realistic nuclear interactions? Phys. Rev. C 72, 034003 (2005)

    Article  ADS  Google Scholar 

  13. A. Deltuva, Tetraneutron: rigorous continuum calculation. Phys. Lett. B 782, 238–241 (2018)

    Article  ADS  Google Scholar 

  14. A. Deltuva, R. Lazauskas, Tetraneutron resonance in the presence of a dineutron. Phys. Rev. C 100, 044002 (2019)

    Article  ADS  Google Scholar 

  15. E. Hiyama, R. Lazauskas, J. Carbonell, M. Kamimura, Possibility of generating a 4-neutron resonance with a \(T\)=3/2 isospin 3-neutron force. Phys. Rev. C 93, 044004 (2016)

    Article  ADS  Google Scholar 

  16. M.D. Higgins et al., Nonresonant density of states enhancement at low energies for three or four neutrons. Phys. Rev. Lett. 125, 052501 (2020)

    Article  ADS  Google Scholar 

  17. M.D. Higgins et al., Comprehensive study of the three- and four-neutron systems at low energies. Phys. Rev. C 103, 024004 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  18. A.A. Korsheninnikov et al., Experimental evidence for the existence of \(^{7}\)H and for a specific structure of \({}^{8}\)He. Phys. Rev. Lett. 90, 082501 (2003)

    Article  ADS  Google Scholar 

  19. M. Caamaño et al., Resonance state in \({}^{7}\)H. Phys. Rev. Lett. 99, 062502 (2007)

    Article  ADS  Google Scholar 

  20. A.A. Bezbakh et al., Evidence for the first excited state of \(^{7}\)H. Phys. Rev. Lett. 124, 022502 (2020)

    Article  ADS  Google Scholar 

  21. L.V. Grigorenko et al., Two-neutron radioactivity and four-nucleon emission from exotic nuclei. Phys. Rev. C 84, 021303(R) (2011)

    Article  ADS  Google Scholar 

  22. K. Kusaka et al., Prototype of superferric quadrupole magnets for the BigRIPS separator at RIKEN. IEEE Trans. Appl. Supercond. 14, 310–315 (2004)

    Article  ADS  Google Scholar 

  23. A. Obertelli et al., MINOS: A vertex tracker coupled to a thick liquid-hydrogen target for in-beam spectroscopy of exotic nuclei. Eur. Phys. J. A 50, 8 (2014)

    Article  Google Scholar 

  24. S. Takeuchi et al., A NaI(Tl) detector array for measurements of \(\gamma \) rays from fast nuclei. Nucl. Instrum. Methods Phys. Res. Sect. A 763, 596–603 (2014)

    Article  ADS  Google Scholar 

  25. Y. Shimizu et al., Vacuum system for the SAMURAI spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. B 317, 739 (2013)

    Article  ADS  Google Scholar 

  26. T. Kobayashi et al., SAMURAI spectrometer for RI beam experiments. Nucl. Instrum. Methods Phys. Res. Sect. B 317, 294–304 (2013)

    Article  ADS  Google Scholar 

  27. S.W. Huang et al., Experimental study of \(^{4}n\) with \(^{8}\)He(\(p,2p\)) reaction. J. Phys.: Conf. Ser. 1643, 012090 (2020)

    Google Scholar 

  28. T. Aumann et al., Technical Report for the design, construction and commissioning of NeuLAND: The high-resolution neutron time-of-flight spectrometer for R\(^{3}\)B. Technical Report GSI and Collaborators (2011)

  29. T. Nakamura, Y. Kondo, Large acceptance spectrometers for invariant mass spectroscopy of exotic nuclei and future developments. Nucl. Instrum. Methods Phys. Res. Sect. B 376, 156–161 (2016)

    Article  ADS  Google Scholar 

  30. Z.X. Cao et al., Recoil proton tagged knockout reaction for \(^{8}\)He. Phys. Lett. B 707, 46–51 (2012)

    Article  ADS  Google Scholar 

  31. K. Markenroth et al., \(^{8}\)He-\(^{6}\)He: a comparative study of nuclear fragmentation reactions. Nucl. Phys. A 679, 462–480 (2001)

    Article  ADS  Google Scholar 

  32. Z.H. Yang et al., Quasifree neutron knockout reaction reveals a small \(s\)-orbital component in the borromean nucleus \(^{17}\)B. Phys. Rev. Lett. 126, 082501 (2021)

    Article  ADS  Google Scholar 

  33. Y. Kondo et al., Recent progress and developments for experimental studies with the SAMURAI spectrometer. Nucl. Instrum. Methods Phys. Res. Sect. B 463, 173–178 (2020)

    Article  ADS  Google Scholar 

  34. X. Mougeot et al., New excited states in the halo nucleus \(^{6}\)He. Phys. Lett. B 718, 441–446 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support of the RIBF accelerator staff and the BigRIPS team for providing the high-quality beam. Z. H. Yang acknowledges the financial support from the Foreign Postdoctoral Researcher program of RIKEN. T. Aumann acknowledges the support by DFG via SFB 1245. P. Koseoglou acknowledges the support from BMBF (NUSTAR.DA grant No.05P 15RDFN1). S. Paschalis acknowledges the support of the UK STFC under contract numbers ST/L005727/1 and ST/P003885/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S.W., Yang, Z.H., Marqués, F.M. et al. Experimental Study of \(^{4}n\) by Directly Detecting the Decay Neutrons. Few-Body Syst 62, 102 (2021). https://doi.org/10.1007/s00601-021-01691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01691-4

Navigation