Skip to main content
Log in

Neutron Structure Properties of Titanium in a Supernova

  • Nuclei/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We calculated important neutron matter properties of \({}^{44}\)Ti in the envelope of supernova SN 1987A and its isotopic chain (\(12\leqslant N\leqslant 82\)) using the Skyrme–Hartree–Fock approach such as the residual and average neutron–proton interactions, neutron skin thickness, bubble structure, single-particle energy level, charge form factor as well as some fundamental nuclear structure properties. For the skin properties, the surface and bulk contributions to neutron skin thickness are obtained based on two-parameter Fermi distributions. Hence, the two-parameter Fermi distributions are obtained by proton and neutron density distributions. To demonstrate the central depletion in the nuclei, the bubble parameters \(b\) and \(b^{\prime}\) are calculated for each nucleus as functions of neutron number \(N\) and the relative neutron excess \(I=(N-Z)/A\). The accuracy and importance of the calculated results are explained and discussed in terms of quantum Coulomb repulsion, quantum shell and mechanical effects, \(nn\)-interactions, orbital angular l of orbitals, and principal quantum number \(n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. H. Shen, H. Toki, K. Oyamatsu, and K. Sumiyoshi, Nucl. Phys. A 721, C1048 (2003).

    Article  ADS  Google Scholar 

  2. H. Yasin, S. Schäfer, A. Arcones, and A. Schwenk, Phys. Rev. Lett. 124, 092701 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  3. K. Ch. Chatzisavvas, V. P. Psonis, C. P. Panos, and Ch. C. Moustakidis, Phys. Lett. A 373, 3901 (2009).

    Article  ADS  Google Scholar 

  4. S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars: The Physics of Compact Objects (John Wiley, New York, 1983).

    Book  Google Scholar 

  5. C. E. Alvarez-Salazar and C. J. Quimbay, Astropart. Phys. 103, 67 (2018).

    Article  ADS  Google Scholar 

  6. J. Wambach, Phys. Rep. 242, 387 (1994).

    Article  ADS  Google Scholar 

  7. D. G. Yakovlev, A. D. Kaminker, O. Y. Gnedin, and P. Haensel, Phys. Rep. 354, 1 (2001).

    Article  ADS  Google Scholar 

  8. M. Warda, M. Centelles, X. Viñas, and X. Roca-Maza, Phys. Rev. C 89, 064302 (2014).

    Article  ADS  Google Scholar 

  9. G. Fricke, C. Bernhardt, K. Heilig, L. A. Schaller, L. Schellenberg, E. B. Shera, and C. W. Dejager, At. Data Nucl. Data Tables 60, 177 (1995).

    Article  ADS  Google Scholar 

  10. H. De Vries, C. W. De Jager, and C. De Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  11. I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

    Article  ADS  Google Scholar 

  12. G. W. Hoffmann, L. Ray, M. Barlett, J. McGill, G. S. Adams, G. J. Igo, F. Irom, A. T. M. Wang, C. A. Whitten, Jr., R. L. Boudrie, J. F. Amann, C. Glashausser, N. M. Hintz, G. S. Kyle, and G. S. Blanpied, Phys. Rev. C 21, 1488 (1980).

    Article  ADS  Google Scholar 

  13. B. C. Clark, L. J. Kerr, and S. Hama, Phys. Rev. C 67, 054605 (2003).

    Article  ADS  Google Scholar 

  14. C. J. Batty, E. Friedman, and A. Gal, Nucl. Phys. A 592, 487 (1995).

    Article  ADS  Google Scholar 

  15. A. Krasznahorkay et al., Nucl. Phys. A 731, 224 (2004).

    Article  ADS  Google Scholar 

  16. A. Trzcińska, J. Jastrzȩbski, P. Lubiński, F. J. Hartmann, R. Schmidt, T. von Egidy, and B. Kłos, Phys. Rev. Lett. 87, 082501 (2001).

  17. J. Jastrzȩbski, A. Trzcińska, P. Lubiński, B. Kłos, F. J. Hartmann, T. von Egidy, and S. Wycech, Int. J. Mod. Phys. E 13, 343 (2004).

    Article  ADS  Google Scholar 

  18. B. Kłos, A. Trzcińska, J. Jastrzȩbski, T. Czosnyka, M. Kisieliński, P. Lubiński, P. Napiorkowski, L. Pieńkowski, F. J. Hartmann, B. Ketzer, P. Ring, R. Schmidt, T. von Egidy, R. Smolańczuk, S. Wycech, K. Gulda, et al., Phys. Rev. C 76, 014311 (2007).

  19. A. Klimkiewicz, N. Paar, P. Adrich, M. Fallot, K. Boretzky, T. Aumann, D. Cortina-Gil, U. Datta Pramanik, Th.W. Elze, H. Emling, H. Geissel, M. Hellström, K. L. Jones, J. V. Kratz, R. Kulessa, C. Nociforo, et al., Acta Phys. Pol. B 40, 589 (2009).

    ADS  Google Scholar 

  20. J. Zenihiro, H. Sakaguchi, T. Murakami, M. Yosoi, Y. Yasuda, S. Terashima, Y. Iwao, H. Takeda, M. Itoh, H. P. Yoshida, and M. Uchida, Phys. Rev. C 82, 044611 (2010).

    Article  ADS  Google Scholar 

  21. C. Mondal, B. K. Agrawal, M. Centelles, G. Colò, X. Roca-Maza, N. Paar, X. Viñas, S. K. Singh, and S. K. Patra, Phys. Rev, Phys. Rev. C 93, 064303 (2016).

    Article  ADS  Google Scholar 

  22. N. K. Glendenning, Compact Stars: Nuclear Physics, Particle Physics, and General Relativity (Springer-Verlag, New York, 2000).

    Book  MATH  Google Scholar 

  23. A. N. Antonov, M. K. Gaidarov, D. N. Kadrev, P. E. Hodgson, and E. Moya de Guerra, Int. J. Mod. Phys. E 13, 759 (2004).

    Article  ADS  Google Scholar 

  24. B. K. Agrawal, J. N. De, and S. K. Samaddar, Phys. Rev. Lett. 109, 262501 (2012).

    Article  ADS  Google Scholar 

  25. G. Baym, H. A. Bethe, and C. J. Pethick, Nucl. Phys. A 175, 225 (1971) 225.

    Article  ADS  Google Scholar 

  26. G. Saxena, M. Kumawat, M. Kaushik, S. K. Jain, and M. Aggarwal, Phys. Lett. B 788, 1 (2019).

    Article  ADS  Google Scholar 

  27. G. Saxena, M. Kumawat, B. K. Agrawal, and M. Aggarwal, J. Phys. G 46, 065105 (2019).

    Article  ADS  Google Scholar 

  28. C. Y. Cardall, Nucl. Phys. B Proc. Suppl. 229–232, 315 (2012).

    Article  ADS  Google Scholar 

  29. G. Blanc and L. Greggio, New Astron. 13, 606 (2008).

    Article  ADS  Google Scholar 

  30. Z. Young and L. Xuan-bin, Chin. Astron. Astrophys. 17, 383 (1993).

    Article  ADS  Google Scholar 

  31. P.-G. Reinhard and H. Flocard, Nucl. Phys. A 584, 467 (1995).

    Article  ADS  Google Scholar 

  32. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 627, 710 (1997).

    Article  ADS  Google Scholar 

  33. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  34. F. Tondeur, M. Brack, M. Farine, and J. M. Pearson, Nucl. Phys. A 420, 297 (1984).

    Article  ADS  Google Scholar 

  35. HAFOMN Code (2020). http://phys.lsu.edu/graceland/faculty/cjohnson/.

  36. P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag Berlin Heidelberg, 1980).

    Book  Google Scholar 

  37. T. H. R. Skyrme, Philos. Mag. 1, 1043 (1956).

    Article  ADS  Google Scholar 

  38. T. H. R. Skryme, Nucl. Phys. 9, 615 (1958–1959).

    Article  Google Scholar 

  39. G. Lingxiao, Z. Yizhong, and W. Nörenberg, Nucl. Phys. A 459, 77 (1986).

    Article  ADS  Google Scholar 

  40. D. Vautherin and D. M. Brink, Phys. Rev. C 5, 626 (1972).

    Article  ADS  Google Scholar 

  41. O. Artun, Mod. Phys. Lett. A 32, 1750117 (2017).

    Article  ADS  Google Scholar 

  42. A. N. Antonov, D. N. Kadrev, M. K. Gaidarov, E. Moya de Guerra, P. Sarriguren, J. M. Udias, V. K. Lukyanov, E. V. Zemlyanaya, and G. Z. Krumova, Phys. Rev. C 72, 044307 (2005).

    Article  ADS  Google Scholar 

  43. P. Sarriguren, M. K. Gaidarov, E. Moya de Guerra, and A. N. Antonov, Phys. Rev. C 76, 044322 (2007).

    Article  ADS  Google Scholar 

  44. R. W. Hasse and W. D. Myers, Geometrical Relationships of Macroscopic Nucler Physics (Springer-Verlag Berlin Heidelberg, 1988).

    Book  Google Scholar 

  45. M. Grasso, Z. Y. Ma, E. Khan, J. Margueron, and N. Van Giai, Phys. Rev. C 76, 044319 (2007).

    Article  ADS  Google Scholar 

  46. B. Schuetrumpf, W. Nazarewicz, and P.-G. Reinhard, Phys. Rev. C 96, 024306 (2017).

    Article  ADS  Google Scholar 

  47. J. Friedrich and N. Voegler, Nucl. Phys. A 373, 192 (1982).

    Article  ADS  Google Scholar 

  48. Z. Wu, S. A. Changizi, and C. Qi, Phys. Rev. C 93, 034334 (2016).

    Article  ADS  Google Scholar 

  49. J. Dechargé, J.-F. Berger, M. Girod, and K. Dietrich, Nucl. Phys. A 716, 55 (2003).

    Article  ADS  Google Scholar 

  50. M. Bender, K. Rutz, P.-G. Reinhard, J. A. Maruhn, and W. Greiner, Phys. Rev. C 60, 034304 (1999).

    Article  ADS  Google Scholar 

  51. P. Möller, A. J. Sierk, T. Ichikawa, and H. Sagawa, At. Data Nucl. Data Tables 109–110, 1 (2016).

    Article  ADS  Google Scholar 

  52. G. A. Lalazissis, S. Raman, and P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).

    Article  ADS  Google Scholar 

  53. M. Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and X. Xing, Chin. Phys. C 41, 030003 (2017).

    Article  ADS  Google Scholar 

  54. E. B. Suckling, PhD Thesis, University of Surrey (2011).

  55. S. G. Nilsson and I. Ragnarsson, Shapes and Shells in Nuclear Structure (Cambridge Univ. Press, 1995).

    Google Scholar 

  56. M. Brack, J. Damgaard, A. S. Jensen, H. C. Pauli, V. M. Strutinsky, and C. Y. Wong, Rev. Mod. Phys. 44, 320 (1972).

    Article  ADS  Google Scholar 

  57. H. Müther and A. Polls, Phys. Rev. C 99, 034315 (2019).

    Article  ADS  Google Scholar 

  58. N. Van Dessel, V. Pandey, H. Ray, and N. Jachowicz, https://arxiv.org/abs/2007.03658.

  59. O. Artun, Int. J. Mod. Phys. E 29 (9), 2050079 (2020).

    Article  ADS  Google Scholar 

  60. O. Artun, New Astron. 89, 101653 (2021).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Artun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Artun, O. Neutron Structure Properties of Titanium in a Supernova. Phys. Atom. Nuclei 84, 837–848 (2021). https://doi.org/10.1134/S106377882106003X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377882106003X

Navigation