Skip to main content
Log in

Self-Consistent Calculation of the Charge Radii in a Long \({}^{\mathbf{58{-}82}}\)Cu Isotopic Chain

  • NUCLEI/Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The charge radii are calculated in long chain of copper isotopes that includes the \({}^{58,79}\)Cu exotic nuclei, which are close to the doubly magic nuclei of \({}^{58,78}\)Ni, and the nuclei featuring the \(N=32\), \(34\), and \(40\) magic subshells. Use is made of the self-consistent theory of finite Fermi systems and the family of energy density functionals proposed by Fayans and his coauthors (DF3, DF3-a, …). The results are compared with experimental data and with the results of the calculations based on self-consistent models that employ new versions of the Fayans functional—Fy(std) and Fy(HFB, \(\nabla r\)), whose parameters were obtained by means of an extended optimization protocol—as well as with the results of ab-initio calculations performed on the basis of the renormalization-group model and with the results of the calculation with a density-dependent spin–orbit interaction stemming from three-nucleon forces. The weakening of odd–even staggering of radii of nuclei in the ISOLDE-CERN experiments as the nuclei approach the \(N=50\) closed neutron shell is analyzed, and the possible mechanisms behind this weakening are considered. It is shown that the isotopic dependences of the charge radii and the total beta-decay energies are correlated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. V. E. Fortov, B. Yu. Sharkov, and H. Stöker, Phys. Usp. 55, 582 (2012).

    Article  ADS  Google Scholar 

  2. Extreme Light Fields Research Center Project xcels, Inst. Appl. Phys., Russ. Acad. Sci. http://www.xcels.iapras.ru.

  3. I. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

    Article  ADS  Google Scholar 

  4. T. E. Cocolios, H. H. Al Suradi, J. Billowes, I. Budinčević, R. P. de Groote, S. De Schepper, V. N. Fedosseev, K. T. Flanagan, S. Franchoo, R. F. Garcia-Ruiz, H. Heylen, F. Le Blanc, K. M. Lynch, B. A. Marsh, P. J. R. Mason, G. Neyens, et al., Nucl. Instrum. Methods Phys. Res., Sect. B 317, 565 (2013).

    Google Scholar 

  5. R. F. Garcia Ruiz, M. L. Bissell, K. Blaum, A. Ekström, N. Frömmgen, G. Hagen, M. Hammen, K. Hebeler, J. D. Holt, G. R. Jansen, M. Kowalska, K. Kreim, W. Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, et al., Nat. Phys. 12, 594 (2016). https://doi.org/10.1038/nphys3645

    Article  Google Scholar 

  6. K. Kreim, M. L. Bissell, J. Papuga, K. Blaum, M. De Rydt, R. F. Garcia Ruiz, S. Goriely, H. Heylen, M. Kowalska, R. Neugart, G. Neyens, W. Nörtershäuser, M. M. Rajabali, R. S. Alarcón, H. H. Stroke, and D. T. Yordanov, Phys. Lett. B 731, 97 (2014).

    Article  ADS  Google Scholar 

  7. G. Fricke and K. Heilig, Nuclear Charge Radii (Springer, Berlin, Heidelberg, 2004).

    Google Scholar 

  8. G. Hagen, A. Ekström, C. Forssén, G. R. Jansen, W. Nazarewicz, T. Papenbrock, K. A. Wendt, S. Bacca, N. Barnea, B. Carlsson, C. Drischler, K. Hebeler, M. Hjorth-Jensen, M. Miorelli, G. Orlandini, A. Schwenk, and J. Simonis, Nat. Phys. 12, 186 (2016).

    Article  Google Scholar 

  9. C. Gorges, L. V. Rodriguez, D. L. Balabanski, M. L. Bissell, K. Blaum, B. Cheal, R. F. Garcia Ruiz, G. Georgiev, W. Gins, H. Heylen, A. Kanellakopoulos, S. Kaufmann, M. Kowalska, V. Lagaki, S. Lechner, B. Maaß, et al., Phys. Rev. Lett. 122, 192502 (2019).

    Article  ADS  Google Scholar 

  10. M. M. Sharma, G. A. Lalazissis, and P. Ring, Phys. Lett. B 317, 9 (1993).

    Article  ADS  Google Scholar 

  11. K. Minamisono, D. M. Rossi, R. Beerwerth, S. Fritzsche, D. Garand, A. Klose, Y. Liu, B. Maaß, P. F. Mantica, A. J. Miller, P. Müller, W. Nazarewicz, W. Nörtershäuser, E. Olsen, M. R. Pearson, et al., Phys. Rev. Lett. 117, 252501 (2016).

    Article  ADS  Google Scholar 

  12. M. Hammen, W. Nörtershäuser, D. L. Balabanski, M. L. Bissell, K. Blaum, I. Budinčević, B. Cheal, K. T. Flanagan, N. Frömmgen, G. Georgiev, Ch. Geppert, M. Kowalska, K. Kreim, A. Krieger, W. Nazarewicz, and R. Neugart, Phys. Rev. Lett. 121, 102501 (2018).

    Article  ADS  Google Scholar 

  13. A. J. Miller, K. Minamisono, A. Klose, D. Garand, C. Kujawa, J. D. Lantis, Y. Liu, B. Maaß, P. F. Mantica, W. Nazarewicz, W. Nörtershäuser, S. V. Pineda, P.-G. Reinhard, D. M. Rossi, F. Sommer, et al., Nat. Phys. 15, 432 (2019). https://doi.org/10.1038/s41567-019-0416-9

    Article  Google Scholar 

  14. A. V. Smirnov, S. V. Tolokonnikov, and S. A. Fayans, Sov. J. Nucl. Phys. 48, 995 (1988).

    Google Scholar 

  15. I. N. Borzov, S. A. Fayans, E. Krömer, and D. Zawischa, Z. Phys. A 355, 117 (1996).

    ADS  Google Scholar 

  16. S. A. Fayans and D. Zawischa, Phys. Lett. B 68, 169 (1998).

    Google Scholar 

  17. C. F. Fayans, JETP Lett. 68, 169 (1998).

    Article  ADS  Google Scholar 

  18. S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa, Nucl. Phys. A 676, 49 (2000).

    Article  ADS  Google Scholar 

  19. S. V. Tolokonnikov and E. E. Saperstein, Phys. At. Nucl. 73, 1684 (2010).

    Article  Google Scholar 

  20. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 74, 1277 (2011).

    Article  Google Scholar 

  21. E. E. Saperstein and S. V. Tolokonnikov, Phys. At. Nucl. 79, 1030 (2016).

    Article  Google Scholar 

  22. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, and R. Schaeffer, Nucl. Phys. A 635, 231 (1998).

    Article  ADS  Google Scholar 

  23. S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. Lett. 102, 152503 (2009).

    Article  ADS  Google Scholar 

  24. H. Grawe, K.-H. Langanke, and G. Martínez-Pinedo, Rep. Prog. Phys. 70, 1525 (2007).

    Article  ADS  Google Scholar 

  25. E. E. Saperstein, I. N. Borzov, and S. V. Tolokonnikov, JETP Lett. 104, 218 (2016).

    Article  ADS  Google Scholar 

  26. P.-G. Reinhard and W. Nazarewicz, Phys. Rev. C 95, 064328 (2017).

    Article  ADS  Google Scholar 

  27. H. Nakada, Phys. Rev. C 100, 044310 (2019).

    Article  ADS  Google Scholar 

  28. S. Tsykyama, K. Bogner, and A. Schwenk, Phys. Rev. C 85, 061304(R) (2016).

  29. H. Kasuya and K. Yoshida, arXive: 2005.03276 [nucl-th].

  30. T. Marketin, L. Huther, and G. Martínez-Pinedo, Phys. Rev. C 93, 025805 (2016).

    Article  ADS  Google Scholar 

  31. M. L. Bissell, T. Carette, K. T. Flanagan, P. Vingerhoets, J. Billowes, K. Blaum, B. Cheal, S. Fritzsche, M. Godefroid, M. Kowalska, J. Krämer, R. Neugart, G. Neyens, W. Nörtershäuser, and D. T. Yordanov, Phys. Rev. C 93, 064318 (2016).

    Article  ADS  Google Scholar 

  32. R. P. de Groote, J. Billowes, C. L. Binnersley, M. L. Bissell, T. E. Cocolios, T. Day Goodacre, G. J. Farooq-Smith, D. V. Fedorov, K. T. Flanagan, S. Franchoo, R. F. Garcia Ruiz, W. Gins, J. D. Holt, Á. Koszorús, K. M. Lynch, T. Miyagi, et al., arXiv: 1911.08765 [nucl-ex].

  33. H. de Vries, C. W. de Jager, and C. de Vries, At. Data Nucl. Data Tables 36, 495 (1987).

    Article  ADS  Google Scholar 

  34. J. Heisenberg, J. Lichtenstadt, C. N. Papanicolas, and J. S. McCarthy, Phys. Rev. C 25, 2292 (1982).

    Article  ADS  Google Scholar 

  35. A. Papoulia, B. Carlson, and J. Ekman, Phys. Rev. A 94, 042502 (2016).

    Article  ADS  Google Scholar 

  36. W. Bertozzi, J. Frair, J. Heisenberg, and J. W. Negele, Phys. Lett. B 41, 408 (1972).

    Article  ADS  Google Scholar 

  37. H. Chandra and G. Sauer, Phys. Rev. S 13, 245 (1976).

    ADS  Google Scholar 

  38. J. L. Friar, J. Martorell, and D. W. L. Sprung, Phys. Rev. A 56, 4579 (1997).

    Article  ADS  Google Scholar 

  39. https://physics.nist.gov/cgi-bin/cuu/Value?rp.

  40. S. Kopecky, J. A. Harvey, N. W. Hill, M. Krenn, M. Pernicka, P. Riehs, and S. Steiner, Phys. Rev. C 56, 2229 (1997).

    Article  ADS  Google Scholar 

  41. Meng Wang, G. Audi, F. G. Kondev, W. J. Huang, S. Naimi, and Xing Xu, Chin. Phys. C 41, 030003 (2017).

    Article  ADS  Google Scholar 

  42. I. N. Borzov, Phys. At. Nucl. 81, 680 (2018).

    Article  Google Scholar 

  43. P. Vingerhoets, K. T. Flanagan, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, M. De Rydt, D. H. Forest, Ch. Geppert, M. Honma, M. Kowalska, J. Krämer, K. Kreim, A. Krieger, R. Neugart, G. Neyens, et al., Phys. Lett. B 703, 34 (2011).

    Article  ADS  Google Scholar 

  44. Youngle Yu and A. Bulgac, Phys. Rev. Lett. 90, 222501 (2003).

    Article  ADS  Google Scholar 

  45. K. T. Flanagan et al., Phys. Rev. Lett. 103, 142501 (2009).

    Article  ADS  Google Scholar 

  46. J. A. Winger, S. V. Ilyushkin, K. P. Rykaczewski, C. J. Gross, J. C. Batchelder, C. Goodin, R. Grzywacz, J. H. Hamilton, A. Korgul, W. Krolas, S. N. Liddick, C. Mazzocchi, S. Padgett, A. Piechaczek, M. M. Rajabali, et al., Phys. Rev. Lett. 102, 142502 (2009).

    Article  ADS  Google Scholar 

  47. Z. Y. Xu et al., Phys. Rev. Lett. 113, 032505 (2014).

    Article  ADS  Google Scholar 

  48. N. J. Stone, INDC(NDS)-0658 (IAEA, Viena, 2014).

  49. P. Muller, M. R. Mumpower, T. Kawano, and W. D. Myers, At. Data Nucl. Data Tables 125, 1 (2018).

    Article  ADS  Google Scholar 

  50. S. V. Tolokonnikov, I. N. Borzov, M. Kortelainen, Yu. S. Lutostansky, and E. E. Saperstein, J. Phys. G: Nucl. Part. Phys. 42, 075102 (2015).

    Article  ADS  Google Scholar 

  51. A. P. Severyukhin, V. V. Voronov, I. N. Borzov, N. N. Arsenyev, and Nguyen Van Giai, Phys. Rev. C 90, 044320 (2014).

    Article  ADS  Google Scholar 

  52. K. Muto, E. Bender, and H.-V. Klapdor, Z. Phys. A 334, 177 (1989).

    ADS  Google Scholar 

  53. L. Xie, X. F. Yang, C. Wraith, C. Babcock, J. Bieroń, J. Billowes, M. L. Bissell, K. Blaum, B. Cheal, L. Filippin, K. T. Flanagan, R. F. Garcia Ruiz, W. Gins, G. Gaigalas, M. Godefroid, C. Gorges, et al., Phys. Lett. B 797, 134805 (2019).

    Article  Google Scholar 

  54. B. A. Marsh, T. Day Goodacre, S. Sels, Y. Tsunoda, B. Andel, A. N. Andreyev, N. A. Althubiti, D. Atanasov, A. E. Barzakh, J. Billowes, K. Blaum, T. E. Cocolios, J. G. Cubiss, J. Dobaczewski, G. J. Farooq-Smith, D. V. Fedorov, et al., Nat. Phys. 14, 1163 (2018). https://doi.org/10.1038/s41567-018-0292-8

    Article  Google Scholar 

  55. A. Voss, F. Buchinger, B. Cheal, J. E. Crawford, J. Dilling, M. Kortelainen, A. A. Kwiatkowski, A. Leary, C. D. P. Levy, F. Mooshammer, M. L. Ojeda, M. R. Pearson, T. J. Procter, and W. Al Tamimi, Phys. Rev. C 91, 044307 (2015).

    Article  ADS  Google Scholar 

  56. I. N. Borzov and S. V. Tolokonnikov, Phys. At. Nucl. 82, 560 (2019).

    Article  Google Scholar 

  57. S. Kaufmann et al., Phys. Rev. Lett. 124, 132502 (2020).

    Article  ADS  Google Scholar 

  58. A. V. Tutukov and A. M. Cherepashchuk, Phys. Usp. 63, 209 (2020). https://doi.org/10.3367/UFNe.2019.03.038547

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Yu.S. Lutostansky and to the participants of the seminar at the Department of Nuclear Astrophysics, National Research Center Kurchatov Institute, for enlightening discussions.

Funding

This work was supported in part by Russian Foundation for Basic Research (project no. 18-02-00670) and by a grant of 2020 from the Department of Neutrino Processes at National Research Center Kurchatov Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Borzov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borzov, I.N., Tolokonnikov, S.V. Self-Consistent Calculation of the Charge Radii in a Long \({}^{\mathbf{58{-}82}}\)Cu Isotopic Chain. Phys. Atom. Nuclei 83, 828–840 (2020). https://doi.org/10.1134/S1063778820060101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778820060101

Navigation