Skip to main content
Log in

Precision βν correlation measurements with the Beta-decay Paul Trap

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The Beta-decay Paul Trap (BPT) at Argonne National Laboratory has proven to be an extremely effective tool for high-precision tests of the Standard Model via measurements of the βν correlation in mass-8 isotopes. Using four double-sided silicon strip detectors (DSSDs) backed by plastic scintillators and surrounding the ions confined by the BPT, the kinematics of the decays of the mirror nuclei lithium-8 and boron-8 are overdetermined when all charged decay products are measured. The most stringent low-energy limit on an intrinsic tensor current in the weak interaction was set using the BPT in 2015 (Sternberg, M.G., et al., Phys. Rev. Lett. 115, 182501 2015) utilizing trapped lithium-8. Since then, similar data for boron-8 and higher statistics data for lithium-8 have been collected and are currently being analyzed. With the elimination of radio-frequency (RF) pickup from the DSSDs and a detailed investigation of experimental systematic errors, the uncertainty is now dominated by the contribution from recoil-order terms in the decay rate. Our eventual goal is to limit tensor currents in the weak interaction with relative precision at or below 0.1%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sternberg, M.G., et al.: . Phys. Rev. Lett. 115, 182501 (2015)

    Article  ADS  Google Scholar 

  2. Naviliat-Cuncic, O., González-Alonso, M.: . Ann. Phys. 525(8-9), 600 (2013)

    Article  Google Scholar 

  3. Vetter, P.A., et al.: . Phys. Rev. C 77, 035502 (2008)

    Article  ADS  Google Scholar 

  4. Gorelov, A., et al.: . Phys. Rev. Lett. 94, 142501 (2005)

    Article  ADS  Google Scholar 

  5. Adelberger, E.G., et al.: Phys. Rev. Lett. 83, 1299 (1999)

    Article  ADS  Google Scholar 

  6. Scielzo, N., et al.: . Nucl. Instrum. Methods Phys. Res. A 681, 94 (2012)

    Article  ADS  Google Scholar 

  7. Li, G., et al.: . Phys. Rev. Lett. 110, 092502 (2013)

    Article  ADS  Google Scholar 

  8. Savard, G., et al.: . Phys. Lett. A 158(5), 247 (1991)

    Article  ADS  Google Scholar 

  9. Jackson, J.D., Treiman, S.B., Wyld, H.W.: . Phys. Rev. 106, 517 (1957)

    Article  ADS  Google Scholar 

  10. Wiringa, R.: Private communication

  11. Hirsh, T., et al.: Nuclear instruments and methods in physics research section a: accelerators, Spectrometers. Detectors and Associated Equipment 887, 122 (2018)

    Article  Google Scholar 

  12. Bortels, G., Collaers, P.: . Int. J. Radiat. Appl. Instrum. Part A Appl. Radiat. Isot. 38(10), 831 (1987)

    Article  Google Scholar 

  13. Lennard, W., et al.: Nuclear instruments and methods in physics research section a: accelerators, Spectrometers. Detectors and Associated Equipment 248(2), 454 (1986)

    Article  Google Scholar 

  14. Scielzo, N.D., et al.: . Phys. Rev. Lett. 93, 102501 (2004)

    Article  ADS  Google Scholar 

  15. Bhattacharya, M., et al.: . Phys. Rev. C 73, 055802 (2006)

    Article  ADS  Google Scholar 

  16. Holstein, B.R.: . Rev. Mod. Phys. 46, 789 (1974)

    Article  ADS  Google Scholar 

  17. Glück, F.: . Comput. Phys. Commun. 101(3), 223 (1997)

    Article  ADS  Google Scholar 

  18. Ziegler, J.F., Ziegler, M., Biersack, J.: . Nucl. Inst. Methods Phys. Res. B Beam Interactions with Materials and Atoms 268(11), 1818 (2010). 19th International Conference on Ion Beam Analysis

    Article  ADS  Google Scholar 

  19. Steinbauer, E., et al.: . Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interactions with Materials and Atoms 85(1), 642 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We acknowledge Natural Sciences and Engineering Research Council, Canada, App. No. 216974, the U.S. Department of Energy Contract No. DE-AC02-06CH11357 [Argonne National Laboratory] and DE-AC52-07NA27344 [Lawrence Livermore National Laboratory], National Science Foundation grant no. 1144082 and the Argonne National Laboratory ATLAS facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary T. Burkey.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Proceedings of the 7th International Conference on Trapped Charged Particles and Fundamental Physics (TCP 2018), Traverse City, Michigan, USA, 30 September-5 October 2018

Edited by Ryan Ringle, Stefan Schwarz, Alain Lapierre, Oscar Naviliat-Cuncic, Jaideep Singh and Georg Bollen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkey, M.T., Savard, G., Gallant, A. et al. Precision βν correlation measurements with the Beta-decay Paul Trap. Hyperfine Interact 240, 36 (2019). https://doi.org/10.1007/s10751-019-1580-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s10751-019-1580-0

Keywords

Navigation