Skip to main content
Log in

Studies on cluster decay from trans-lead nuclei using different versions of nuclear potentials

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The cluster decays from various isotopes of trans-lead nuclei have been studied using 12 different nuclear potentials by evaluating decay half-lives and are then compared with the available experimental data. The study has shown that the barrier penetrability as well as the decay half-lives varies with the nuclear potential used. The standard deviation of the estimated half-lives is also calculated for these twelve nuclear potentials in comparison with the experimental data. The potential Bass 1980 is found to be the most appropriate potential for studying cluster radioactivity as the standard deviation obtained is least. Among the different proximity potential versions; proximity 1977, proximity 1988, proximity 2000, and modified proximity 2000, the minimum standard deviation is for proximity 1988. The Geiger-Nuttall (G-N) plots studied for different cluster emissions from various parents are observed to show linear behavior but with different slopes and intercepts. Again, the G-N plots obtained are linear with different slopes and intercepts when plotted for different nuclear potentials. So it is observed that with the inclusion of different nuclear potentials, the linearity of the G-N plot remains unaltered. Irrespective of the nuclear potential used, the universal curve (\(\log_{10}T_{1/2}\) vs. \( - \ln P\)) studied for various clusters emitted from various parents are obtained as linear with same slope and intercept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Sandulescu, D.N. Poenaru, W. Greiner, Sov. J. Part. Nucl. 11, 528 (1980)

    Google Scholar 

  2. H.J. Rose, G.A. Jones, Nature 307, 245 (1984)

    Article  ADS  Google Scholar 

  3. R. Bonetti, A. Guglielmetti, Rom. Rep. Phys. 59, 301 (2007)

    Google Scholar 

  4. E. Hourani, M. Hussonnois, D.N. Poenaru, Ann. Phys. (paris) 14, 311 (1989)

    ADS  Google Scholar 

  5. W. Greiner, M. Ivascu, D.N. Poenaru, S. Sandulescu, in Treatise on Heavy Ion Science, edited by D.A. Bromley, Vol. 8 (Plenum, New York, 1989) p. 641

  6. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. Lett. 107, 062503 (2011)

    Article  ADS  Google Scholar 

  7. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. C 85, 034615 (2012)

    Article  ADS  Google Scholar 

  8. R. Blendowske, T. Fliessbach, H. Walliser, Nucl. Phys. A 464, 75 (1987)

    Article  ADS  Google Scholar 

  9. S.S. Malik, R.K. Gupta, Phys. Rev. C 39, 1992 (1989)

    Article  ADS  Google Scholar 

  10. B. Buck, A.C. Merchant, Phys. Rev. C 39, 2097 (1989)

    Article  ADS  Google Scholar 

  11. S. Landowne, C.H. Dasso, Phys. Rev. C 33, 387 (1986)

    Article  ADS  Google Scholar 

  12. D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, J. Phys. G: Nucl. Part. Phys. 10, 183 (1984)

    Article  ADS  Google Scholar 

  13. D.N. Poenaru, W. Greiner, J. Phys. G: Nucl. Part. Phys. 17, 443 (1991)

    Article  ADS  Google Scholar 

  14. D.N. Poenaru, M. Ivascu, A. Sandulescu, W. Greiner, Phys. Rev. C 32, 572 (1985)

    Article  ADS  Google Scholar 

  15. G.A. Pik-Pichak, Yad. Fiz, Sov. J. Nucl. Phys. 44, 923 (1986)

    Google Scholar 

  16. Y.J. Shi, W.J. Swiatecki, Nucl. Phys. A 438, 450 (1985)

    Article  ADS  Google Scholar 

  17. Y.J. Shi, W.J. Swiatecki, Nucl. Phys. A 464, 205 (1987)

    Article  ADS  Google Scholar 

  18. G. Shanmugam, B. Kamalaharan, Phys. Rev. C 38, 1377 (1988)

    Article  ADS  Google Scholar 

  19. K.P. Santhosh, A. Joseph, Pramana 55, 375 (2000)

    Article  ADS  Google Scholar 

  20. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064609 (2010)

    Article  ADS  Google Scholar 

  21. D. Jain, R. Kumar, M.K. Sharma, Nucl. Phys. A 915, 106 (2013)

    Article  ADS  Google Scholar 

  22. G.L. Zhang, W.W. Qu, M.F. Guo, H.Q. Zhang, R. Wolski, J.Q. Qian, Eur. Phys. J. A 52, 39 (2016)

    Article  ADS  Google Scholar 

  23. M. Ismail, I.A.M. Abdul-Magead, Can. J. Phys. 94, 102 (2016)

    Article  ADS  Google Scholar 

  24. T. Rajbongshi, K. Kalita, Cent. Eur. J. Phys. 12, 433 (2014)

    Google Scholar 

  25. R. Kumari, S. Kaur, Chin. Phys. Lett. 31, 112501 (2014)

    Article  Google Scholar 

  26. K.E. Abd El Mageed, L.I. Abou Salem, K.A. Gado, A.G. Shalaby, Chin. J. Phys. 53, 120304-1 (2015)

    Google Scholar 

  27. V.E. Viola Jr., G.T. Seaborg, J. Inorg. Nucl. Chem. 28, 741 (1966)

    Article  Google Scholar 

  28. A. Parkhomenko, A. Sobiczewski, Acta Phys. Pol. B 36, 1363 (2005)

    ADS  Google Scholar 

  29. A. Sobiczewski, K. Pomorski, Prog. Particle Nucl. Phys. 58, 292 (2007)

    Article  ADS  Google Scholar 

  30. N. Zeldes, D.N. Poenaru, W. Greiner, Handbook of Nuclear Properties (Clarendon Press, Oxford, 1996) p. 12

  31. D.N. Poenaru, M. Ivascu, D. Mazilu, Comput. Phys. Commun. 25, 297 (1982)

    Article  ADS  Google Scholar 

  32. D.N. Poenaru, W. Greiner, Phys. Scr. 44, 427 (1991)

    Article  ADS  Google Scholar 

  33. D.N. Poenaru, R.A. Gherghescu, N. Carjan, EPL 77, 62001 (2007)

    Article  ADS  Google Scholar 

  34. D.N. Poenaru, R.A. Gherghescu, W. Greiner, J. Phys. G: Nucl. Part. Phys. 39, 015105 (2012)

    Article  ADS  Google Scholar 

  35. D.N. Poenaru, R.A. Gherghescu, W. Greiner, J. Phys. G: Nucl. Part. Phys. 40, 105105 (2013)

    Article  ADS  Google Scholar 

  36. D.N. Poenaru, I.H. Plonski, R.A. Gherghescu, W. Greiner, J. Phys. G: Nucl. Part. Phys. 32, 1223 (2006)

    Article  ADS  Google Scholar 

  37. K.P. Santhosh, S. Sabina, G.J. Jayesh, Nucl. Phys. A 34, 850 (2011)

    Google Scholar 

  38. K.P. Santhosh, B. Priyanka, Nucl. Phys. A 929, 20 (2014)

    Article  ADS  Google Scholar 

  39. K.P. Santhosh, I. Sukumaran, Can. J. Phys. 95, 31 (2016)

    Article  ADS  Google Scholar 

  40. K.P. Santhosh, I. Sukumaran, Braz. J. Phys. 46, 754 (2016)

    Article  ADS  Google Scholar 

  41. K.P. Santhosh, B. Priyanka, Phys. Rev. C 89, 064604 (2014)

    Article  ADS  Google Scholar 

  42. K.P. Santhosh, B. Priyanka, C. Nitya, Nucl. Phys. A 955, 156 (2016)

    Article  ADS  Google Scholar 

  43. K.P. Santhosh, Proceedings of the 60th DAE-BRNS Symposium on Nuclear Physics, India, 2015, edited by B.K. Nayak, D. Dutta, S.M. Sharma, Vol. 60 (AP, India, 2015) p. 630

  44. I. Dutt, R.K. Puri, Phys. Rev. C 81, 064608 (2010)

    Article  ADS  Google Scholar 

  45. W. Reisdorf, J. Phys. G: Nucl. Part. Phys. 20, 1297 (1994)

    Article  ADS  Google Scholar 

  46. Y.J. Yao, G.L. Zhang, W.W. Qu, J.Q. Qian, Eur. Phys. J. A 51, 122 (2015)

    Article  ADS  Google Scholar 

  47. K.P. Santhosh, Sabina Sahadevan, B. Priyanka, M.S. Unnikrishnan, Nucl. Phys. A 882, 49 (2012)

    Article  ADS  Google Scholar 

  48. K.P. Santhosh, Indu Sukumaran, B. Priyanka, Nucl. Phys. A 935, 28 (2015)

    Article  ADS  Google Scholar 

  49. K.P. Santhosh, Jayesh George Joseph, Phys. Rev. C 86, 024613 (2012)

    Article  ADS  Google Scholar 

  50. K.P. Santhosh, B. Priyanka, Phys. Rev. C 90, 054614 (2014)

    Article  ADS  Google Scholar 

  51. K.P. Santhosh, Pramana 85, 447 (2015)

    Article  ADS  Google Scholar 

  52. K.P. Santhosh, B. Priyanka, M.S. Unnikrishnan, AIP Conf. Proc. 1524, 135 (2013)

    Article  ADS  Google Scholar 

  53. K.P. Santhosh, P.V. Subha, B. Priyanka, Pramana 86, 819 (2016)

    Article  ADS  Google Scholar 

  54. K.P. Santhosh, M.S. Unnikrishnan, B. Priyanka, Proceedings of the DAE-Symposium on Nuclear Physics, India, 2012, edited by S.R. Jain, P. Shukla, A. Chatterjee, V.M. Datar, M. Sharma, Vol. 57 (Prudent Arts & Fab Pvt. Ltd., 2012) p. 342

  55. Y.Z. Wang, S.J. Wang, Z.Y. Hou, J.Z. Gu, Phys. Rev. C 92, 064301 (2015)

    Article  ADS  Google Scholar 

  56. N. Wang, M. Liu, X.Z. Wu, J. Meng, Phys. Lett. B 734, 215 (2014)

    Article  ADS  Google Scholar 

  57. D. Ni, Z. Ren, T. Dong, C. Xu, Phys. Rev. C 78, 044310 (2008)

    Article  ADS  Google Scholar 

  58. H. Badran, C. Scholey, K. Auranen, T. Grahn, P.T. Greenlees, A. Herzan, U. Jakobsson, R. Julin, S. Juutinen, J. Konki, M. Leino, M. Mallaburn, J. Pakarinen, P. Papadakis, J. Partanen, P. Peura, P. Rahkila, M. Sandzelius, J. Sarén, J. Sorri, S. Stolze, J. Uusitalo, Phys. Rev. C 94, 054301 (2016)

    Article  ADS  Google Scholar 

  59. R. Kumar, Phys. Rev. C 86, 044612 (2012)

    Article  ADS  Google Scholar 

  60. R. Kumar, M.K. Sharma, Phys. Rev. C 85, 054612 (2012)

    Article  ADS  Google Scholar 

  61. G.L. Zhang, Y.J. Yao, M.F. Guo, M. Pan, G.X. Zhang, X.X. Liu, Nucl. Phys. A 951, 86 (2016)

    Article  ADS  Google Scholar 

  62. K.P. Santhosh, B. Priyanka, M.S. Unnikrishnan, Nucl. Phys. A 889, 29 (2012)

    Article  ADS  Google Scholar 

  63. Indu Sukumaran, K.P. Santhosh, IOSR J. Appl. Phys. 2, 1 (2017)

    Article  Google Scholar 

  64. J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. 105, 427 (1977)

    Article  ADS  Google Scholar 

  65. J. Blocki, W.J. Swiatecki, Ann. Phys. 132, 53 (1981)

    Article  ADS  Google Scholar 

  66. P. Moller, J.R. Nix, Nucl. Phys. A 361, 117 (1981)

    Article  ADS  Google Scholar 

  67. W.D. Myers, W.J. Swiatecki, Phys. Rev. C 62, 044610 (2000)

    Article  ADS  Google Scholar 

  68. W.D. Myers, W.J. Swiatecki, Nucl. Phys. A 336, 267 (1980)

    Article  ADS  Google Scholar 

  69. B. Nerlo-Pomorska, K. Pomorski, Z. Phys. A 348, 169 (1994)

    Article  ADS  Google Scholar 

  70. G. Royer, R. Rousseau, Eur. Phys. J. A 42, 541 (2009)

    Article  ADS  Google Scholar 

  71. R. Bass, Phys. Lett. B 47, 139 (1973)

    Article  ADS  Google Scholar 

  72. R. Bass, Nucl. Phys. A 231, 45 (1974)

    Article  ADS  Google Scholar 

  73. R. Bass, Phys. Rev. Lett. 39, 265 (1977)

    Article  ADS  Google Scholar 

  74. P.R. Christensen, A. Winther, Phys. Lett. B 65, 19 (1976)

    Article  ADS  Google Scholar 

  75. A. Winther, Nucl. Phys. A 594, 203 (1995)

    Article  ADS  Google Scholar 

  76. H. Ngo, C. Ngo, Nucl. Phys. A 348, 140 (1980)

    Article  ADS  Google Scholar 

  77. V.Y. Denisov, Phys. Lett. B 526, 315 (2002)

    Article  ADS  Google Scholar 

  78. V.Y. Denisov, H. Ikezoe, Phys. Rev. C 72, 064613 (2005)

    Article  ADS  Google Scholar 

  79. K.N. Huang, M. Aoyagi, M.H. Chen, B. Crasemann, H. Mark, At. Data Nucl. Data Tables 18, 243 (1976)

    Article  ADS  Google Scholar 

  80. M. Wang, G. Audi, A.H. Wapstra, F.G. Kondev, M. MacCormick, X. Xu, B. Pfeiffer, Chin. Phys. C 36, 1603 (2012)

    Article  Google Scholar 

  81. D.N. Poenaru, R.A. Gherghescu, W. Greiner, Phys. Rev. C 83, 014601 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. P. Santhosh.

Additional information

Communicated by L. Tolos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santhosh, K.P., Sukumaran, I. Studies on cluster decay from trans-lead nuclei using different versions of nuclear potentials. Eur. Phys. J. A 53, 136 (2017). https://doi.org/10.1140/epja/i2017-12309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12309-3

Navigation