Skip to main content
Log in

A systematic study of band structure and electromagnetic properties of neutron rich odd mass Eu isotopes in the projected shell model framework

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.J. Pearson et al., Phys. Rev. C 49, R1239 (1994)

    Article  ADS  Google Scholar 

  2. R.G. Helmer, Nucl. Data Sheets 107, 507 (2006)

    Article  ADS  Google Scholar 

  3. J.F. Smith et al., Phys. Rev. C 62, 034312 (2000)

    Article  ADS  Google Scholar 

  4. J.F. Smith et al., Phys. Rev. C 58, 3171 (1998)

    Article  ADS  Google Scholar 

  5. D.G. Burke, Nucl. Phys. A 747, 131 (2005)

    Article  ADS  Google Scholar 

  6. J. Ungrin, Z. Sujkowski, M.W. Johns, Nucl. Phys. A 123, 1 (1969)

    Article  ADS  Google Scholar 

  7. J. Ungrin, D.G. Burke, M.W. Johns, W.P. Alford, Nucl. Phys. A 132, 322 (1969)

    Article  ADS  Google Scholar 

  8. D.G. Burke, E.R. Flynn, I.D. Sherman, J.W. Sunier, Nucl. Phys. A 258, 118 (1976)

    Article  ADS  Google Scholar 

  9. D.G. Burke et al., Can. J. Phys. 57, 271 (1979)

    Article  ADS  Google Scholar 

  10. P.T. Prokofjev et al., Nucl. Phys. A 455, 1 (1986)

    Article  ADS  Google Scholar 

  11. R. Katajanheimo, D. Liljavirta, A. Siivola, E. Hammaren, E. Liukkonen, Z. Phys. A 319, 91 (1984)

    Article  ADS  Google Scholar 

  12. C.W. Reich, Nucl. Data Sheets 104, 1 (2005)

    Article  ADS  Google Scholar 

  13. D.J. Hartley et al., Phys. Rev. C 57, 2944 (1998)

    Article  ADS  Google Scholar 

  14. N. Nica, Nucl. Data Sheets 132, 1 (2016)

    Article  Google Scholar 

  15. N. Kaffrell, Phys. Rev. C 8, 414 (1973)

    Article  ADS  Google Scholar 

  16. D.G. Burke, G. Lovhoiden, E.R. Flynn, J.W. Sunier, Nucl. Phys. A 318, 77 (1979)

    Article  ADS  Google Scholar 

  17. H. Willmes, R.A. Anderl, J.D. Cole, R.C Greenwood, C.W. Reich, Phys. Rev. C 36, 1540 (1987)

    Article  ADS  Google Scholar 

  18. C.W. Reich, Nucl. Data Sheets 113, 157 (2012)

    Article  ADS  Google Scholar 

  19. O. Scholten, N. Blasi, Nucl. Phys. A 380, 509 (1982)

    Article  ADS  Google Scholar 

  20. C.E. Alonso, J.M. Arias, M. Lozano, J. Phys. G: Nucl. Phys. 14, 877 (1988)

    Article  ADS  Google Scholar 

  21. H.R. Yazar, Phys. At. Nucl. 76, 702 (2013)

    Article  Google Scholar 

  22. R.K. Pandit, B. Slathia, R. Devi, S.K. Khosa, Int. J. Mod. Phys. E 26, 1750040 (2017)

    Article  ADS  Google Scholar 

  23. K. Hara, Y. Sun, Int. J. Mod. Phys. E 4, 637 (1995)

    Article  ADS  Google Scholar 

  24. K. Hara, Y. Sun, Comput. Phys. Commun. 104, 245 (1997)

    Article  ADS  Google Scholar 

  25. Y. Sun, Phys. Scr. 91, 043005 (2016)

    Article  ADS  Google Scholar 

  26. K. Hara, Y. Sun, Nucl. Phys. A 531, 221 (1991)

    Article  ADS  Google Scholar 

  27. K. Hara, S. Iwasaki, Nucl. Phys. A 332, 61 (1979)

    Article  ADS  Google Scholar 

  28. K. Hara, S. Iwasaki, Nucl. Phys. A 348, 200 (1980)

    Article  ADS  Google Scholar 

  29. K. Hara, Y. Sun, Nucl. Phys. A 529, 445 (1991)

    Article  ADS  Google Scholar 

  30. K. Hara, Y. Sun, Nucl. Phys. A 537, 77 (1992)

    Article  ADS  Google Scholar 

  31. P. Ring, P. Schuck, The Nuclear Many Body Problem (Springer-Verlag, Berlin, 1980)

  32. I.L. Lamm, Nucl. Phys. A 125, 504 (1969)

    Article  ADS  Google Scholar 

  33. V. Velazquez, J. Hirsch, Y. Sun, Nucl. Phys. A 643, 39 (1998)

    Article  ADS  Google Scholar 

  34. Y. Sun, J.L. Egido, Nucl. Phys. A 580, 1 (1994)

    Article  ADS  Google Scholar 

  35. Y.C. Yang, Y. Sun, S.J. Zhu, M. Guidry, C.L. Wu, J. Phys. G: Nucl. Part. Phys. 37, 085110 (2010)

    Article  ADS  Google Scholar 

  36. Y. Sun, S.X. Wen, D.H. Feng, Phys. Rev. Lett. 72, 3483 (1994)

    Article  ADS  Google Scholar 

  37. T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 436, 14 (1985)

    Article  ADS  Google Scholar 

  38. J. Zhang, A.J. Larabee, L.L. Riedinger, J. Phys. G: Nucl. Phys. 13, L75 (1987)

    Article  Google Scholar 

  39. Nilsson et al., Nucl. Phys. A 131, 1 (1969)

    Article  ADS  Google Scholar 

  40. A.P. Tonchev, Y.P. Gangrsky, A.G. Belov, V.E. Zhuchko, Phys. Rev. C 58, 2851 (1998)

    Article  ADS  Google Scholar 

  41. P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995)

    Article  ADS  Google Scholar 

  42. P. Moller, A. J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109-110, 1 (2016)

    Article  ADS  Google Scholar 

  43. M. Baranger, K. Kumar, Nucl. Phys. 62, 113 (1965)

    Article  Google Scholar 

  44. G.G. Seaman, E.M. Bernstein, J.M. Palms, Phys. Rev. 161, 1223 (1967)

    Article  ADS  Google Scholar 

  45. J. Hess, Nucl. Phys. A 142, 273 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rani Devi.

Additional information

Communicated by T. Duguet

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, R.K., Devi, R., Khosa, S.K. et al. A systematic study of band structure and electromagnetic properties of neutron rich odd mass Eu isotopes in the projected shell model framework. Eur. Phys. J. A 53, 201 (2017). https://doi.org/10.1140/epja/i2017-12393-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2017-12393-3

Navigation