Skip to main content
Log in

Results of a search for daily and annual variations of the 214Po half-life at the two year observation period

  • The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–Ferbuary 8, 2015, Valday, Russia
  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

The brief description of installation TAU-2 intended for long-term monitoring of the half-life value τ(T 1/2) of the 214Po is presented. The methods of measurement and processing of collected data are reported. The results of analysis of time series values of τ with different time step are presented. Total measurement time was equal to 590 days. Averaged value of the 214Po half-life was obtained τ = 163.46 ± 0.04 μs. The annual variation with an amplitude A = (8.9 ± 2.3) × 10−4, solar-daily variation with an amplitude A So = (7.5 ± 1.2) × 10−4, lunar-daily variation with an amplitude A L = (6.9 ± 2.0) × 10−4 sidereal-daily variation with an amplitude A S = (7.2 ± 1.2) × 10−4 were found in a series of τ values. The maximal values of amplitude are observed at the moments when the projections of the installation Earth location velocity vectors toward the source of possible variation achieve its maximal magnitudes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Hardy, J. R. Goodwin, and V. E. Iacob, “Do radioactive half-lives vary with the Earth-to-Sun distance?,” Appl. Radiat. Isot. 70, 1931 (2012); arXiv:1108.5326 [nucl-ex]. doi 10.1016/j.apradiso.2012.02.021

    Article  Google Scholar 

  2. E. Bellotti, E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo, et al., “Search for the time dependence of the 137Cs decay constant,” Phys. Lett. B 710, 114 (2012); arXiv:1202.3662 [nucl-ex]. doi 10.1016/j.physletb.2012.02.083

    Article  ADS  Google Scholar 

  3. E. Bellotti, E. Bellotti, C. Broggini, G. Di Carlo, M. Laubenstein, R. Menegazzo, et al. “Pietroni search for time modulations in the decay rate of 40K and 232Th and influence of a scalar field from the Sun,” Astropart. Phys. 61, 82 (2014); arXiv:1311.7043 [astro-ph.SR]; doi 10.1016/j.astropartphys.2014.05.006.10.1016/j.astr opartphys.2014.05.006

    Article  ADS  Google Scholar 

  4. J. H. Jenkins, E. Fischbach, J. B. Buncher, J. T. Gruenwald, D. E. Krause, and J. J. Mattes, “Evidence for correlations between nuclear decay rates and Earth-Sun distance,” Astropart. Phys. 32, 42 (2009); arXiv:0808.3283 [astro-ph]. doi 10.1016/j.astropartphys. 2009.05.004

    Article  ADS  Google Scholar 

  5. P. A. Sturrock, E. Fischbach, and J. Jenkins, “Analysis of beta-decay rates for Ag108, Ba133, Eu152, Eu154, Kr85, Ra226 and Sr90, measured at the physikalischtechnische bundesanstalt from 1990 to 1996,” ApJ. 794, 42 (2014); arXiv:1408.3090 [nucl-th]. doi 10.1088/0004- 637X/794/1/42.10.1088/0004-637X/794/1/42

    Article  ADS  Google Scholar 

  6. P. A. Sturrock, E. Fischbach, D. Javorsek, J. H. Jenkins, R. H. Lee, J. Nistor, and J. D. Scargle, “Comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt,” Astropart. Phys. 50, 47 (2014). doi 10.1016/j.astropartphys. 2014.04.006

    Article  ADS  Google Scholar 

  7. O. Nahle and K. Kossert, “Comment on comparative study of beta-decay data for eight nuclides measured at the Physikalisch-Technische Bundesanstalt [Astropart. Phys., 50, 47–58],” Astropart. Phys. 66, 47 (2015); arXiv:1408.5219 [nucl-ex]. doi 10.1016/j.astropartphys. 2014.11.005

    Article  Google Scholar 

  8. E. N. Alexeyev, Ju. M. Gavriljuk, A. M. Gangapshev, A. M. Gezhaev, V. V. Kazalov, V. V. Kuzminov, S. P. Yakimenko, S. I. Panasenko, and S. S. Ratkevich, “Experimental test of the time stability of the half-life of alpha-decay Po-214 nuclei,” Astropart. Phys. 46, 23 (2013); arXiv:1112.4362 [nucl-ex]. doi 10.1016/j.astropartphys. 2013.04.005

    Article  ADS  Google Scholar 

  9. S.-C. Wu, “Nuclear data sheets for A = 214,” Nucl. Data Sheets 110, 681 (2009). doi 10.1016/j.nds.2009.02.002

    Article  ADS  Google Scholar 

  10. R. B. Firestone and S. Y. Frank Chu, Table of Isotopes, Seventh Edition, 8th ed., Ed. by C. M. Baglin (Willey, New York, 1996).

  11. P. M. Gopych and I. I. Zaljubovsky, Fiz. Elem. Chast. Atom. Yadra 19, 785 (1988).

  12. L. Fonda, G. C. Ghirardi, and A. Rimini, “Decay theory of unstable quantum systems,” Rep. Prog. Phys. 41, 587 (1978). doi 10.1088/0034-4885/41/4/003

    Article  ADS  Google Scholar 

  13. L. A. Khalfin, “Zenos quantum effect,” Physics- Uspekhi 160 (10), 185 (1990).

    Google Scholar 

  14. B. Misra and E. C. G. Sudarshan, “The Zenos paradox in quantum theory,” J. Math. Phys. 18, 756 (1977).

    Article  ADS  MathSciNet  Google Scholar 

  15. P. Facchi and S. Pascasio, “Quantum Zeno dynamics: Mathematical and physical aspects,” J. Phys. A: Math. Theor. 41, 493001 (2008). doi 10.1088/1751- 8113/41/49/493001

    Article  MathSciNet  MATH  Google Scholar 

  16. W. M. Itano, D. J. Heinzen, J. J. Bollinger, and D. J. Wineland, “Quantum Zeno effect,” Phys. Rev. A 41, 2295 (1990). doi 10.1103/PhysRevA.41.2295

    Article  ADS  Google Scholar 

  17. E. N. Alexeyev, Yu. M. Gavrilyuk, A. M. Gangapshev, V. V. Kazalov, V. V. Kuzminov, S. I. Panasenko, and S. S. Ratkevich, “Sources of the systematic errors of 214Po half-life measurements,” Phys. Part. Nucl. 46 (2), 157 (2015); arXiv:1404.5769 [nucl-ex]. doi 10.1134/S1063779615020021

    Article  Google Scholar 

  18. Ju. M. Gavriljuk, A. M. Gangapshev, A. M. Gezhaev, V. V. Kazalov, V. V. Kuzminov, S. I. Panasenko, S. S. Ratkevich, and S. P. Yakimenko, “Working characteristics of the New Low-Background Laboratory (DULB-4900, Baksan Neutrino Observatory),” Nucl. Instr. Meth. A 729, 576 (2013); arXiv:1204.6424 [physics. ins-det]. doi 10.1016/j.nima.2013.07.090.10.1016/j.nima.2013.07.090

    Article  ADS  Google Scholar 

  19. M. N. Medvedev, “Report from gravity works in the Baksan Valley in 2013,” Report SAI, Moscow, November 2013.

    Google Scholar 

  20. G. Bellini et al. (BOREXINO Collab.), “Lifetime measurements of 214Po and 212Po with the CTF liquid scintillator detector at LNGS,” Eur. Phys. J. A 491, 92 (2013); arXiv:1212.1332 [nucl-ex]. doi 10.1140/epja/i2013-13092-9

    Article  ADS  Google Scholar 

  21. Ed. by Seidelmann P. Kenneth, Explanatory Supplement to the Astronomical Almanac, (at page 698), United States Naval Observatory, Nautical Almanac Office, Great Britain, 1992.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. N. Alexeyev.

Additional information

Talk at The International Workshop on Prospects of Particle Physics: “Neutrino Physics and Astrophysics” February 1–8, 2015, Valday, Russia.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexeyev, E.N., Gavrilyuk, Y.M., Gangapshev, A.M. et al. Results of a search for daily and annual variations of the 214Po half-life at the two year observation period. Phys. Part. Nuclei 47, 986–994 (2016). https://doi.org/10.1134/S1063779616060034

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616060034

Navigation