Skip to main content

Advertisement

Log in

Neutron Yield of the Reaction (α, n) on Thick Targets Comprised of Light Elements

  • Published:
Atomic Energy Aims and scope

Accurate data on the neutron yield from the interaction of α-particles with the nuclei of light elements ranging from lithium to potassium are required for solving the problems of nuclear power technologies: development of analytical means for controlling the technological processes of fabricating and reprocessing nuclear fuel, securing radiological protection for workers, improving the systems for managing and monitoring nuclear materials and radioactive wastes, measuring the burnup fraction of spent nuclear fuel, and others. The uncertainty of this information must be <10% for energies ranging from 4 to 9 MeV of α-particles emitted by naturally occurring and artificial radionuclides. The computational uncertainty of the neutron yield can be reduced on the basis of a combined analysis of (α, n) reactions, measured on α-particle accelerators with tunable energy and on compounds of actinides with light elements, using reliable data on the stopping power of α-particles for elements from hydrogen to californium. The results of such an analysis based on experimental and evaluated data for the light isotopes 6Li, 7Li, 9Be, 10B, 11B, 13C, 14N, 17O, 18O, 21Ne, 22Ne, 19F, 23Na, 25Mg, 26Mg, 27Al, 29Si, 30Si, 31P, 33S, 34S, 35Cl, 37Cl, and 41K in the α-particle energy range from 4 to 9 MeV are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Bulanenko, V. V. Frolov, and E. M. Tsenter, “Computational evaluation of the neutron yield of the (α, n) reaction for multicomponent media,” At. Énerg., 53, No. 3, 160–164 (1982).

    Google Scholar 

  2. V. A. Vukolov and F. E. Chukreev, “On the accuracy of computed neutron yields for chemical compounds of actinides,” At. Énerg., 62, No. 4, 232–236 (1987).

    Google Scholar 

  3. H. Liskien and A. Paulsen, “Neutron yield of light elements under α-bombardment,” Atomkernenergie, 30, No. 1, 59–60 (1977).

    Google Scholar 

  4. R. Heaton, H. Lee, P. Skensved, and B. Robertson, “Neutron production from thick-target (α, n) reactions,” Nucl. Instrum. Meth. in Phys. Res. A, 276, 529–538 (1989).

    Article  ADS  Google Scholar 

  5. K. Shibata, T. Murata, and H. Matsunobu, Japanese Evaluated Nuclear Data Library, JENDL/AN-2003, JAERI (2003).

  6. T. Murata, H. Matsunobu, and K. Shibata, Evaluation of the (α, xn) Reaction Data for JENDL/AN-2005, JAEAResearch 2006-052 (2006).

  7. J. Ziegler, Helium: Stopping Powers and Ranges in All Elements, Pergamon Press, New York (1977).

    Google Scholar 

  8. G. N. Vlaskin, NEDIS2.0 Code for Calculating the Neutron Yield and Spectra from (α, n) Reactions on the Nuclei of Light Elements and Owing to Spontaneous Fission, Prepring VNIINM 06-1 (2006).

  9. W. Wilson, R. Perry, E. Shores, et al., Sources-4C: A Code for Calculating (α, n), Spontaneous Fission, and Delayed Neutron Sources and Spectra, Rep. LA UR-02-1839 (2002).

  10. K. Rosman and P. Taylor, Isotopic Composition of the Elements, IUPAC Commission on Atomic Weights and Abundance (1997).

  11. M. Olson and R. Kavanagh, “7Li(α, n) cross section into threshold to 5,67 MeV,” Phys. Rev. C, 30, No. 5, 1375–377 (1984).

    Article  ADS  Google Scholar 

  12. L. Zwan and K. Geiger, “The 7Li(α, n)10B differential cross section measurements for α-energies of up to 8 MeV,” Phys. Rev. A, 180, 615–624 (1972).

    Google Scholar 

  13. R. Sealock, Hsioa-Yuan Wu, and J. Overley, “7Li(α, n)10B differential cross-section measurements from threshold to E = 5.1 MeV,” Nucl. Phys. A, 357, 279–292 (1981).

    Article  ADS  Google Scholar 

  14. K. Geiger and L. Zwan, “Radioactive neutron source-spectra from 9Be(α, n) cross section data,” Nucl. Instrum. Meth., 131, No. 2, 315–321 (1975).

    Article  ADS  Google Scholar 

  15. L. Zwan and K. Geiger, “The 9Be(α, n)12C cross section between 1.5 and 7.8 MeV,” Nucl. Phys. A, 152, No. 3, 481–494 (1970).

    Article  ADS  Google Scholar 

  16. A. Obst, T. Grandy, and J. Weil, “Reaction 9Be(α, n)12C from 1.7 to 6.4 MeV,” Phys. Rev. C, 5, No. 3, 738–754 (1972).

    Article  ADS  Google Scholar 

  17. C. Davids, “A study of (α, n) reactions on Be-9 and C-13 at low energies,” Nucl. Phys. A, 110, No. 3, 619–636 (1968).

    Article  ADS  Google Scholar 

  18. J. Gibbons and R. Macklin, “Total cross section for 9Be(α, n),” Phys. Rev. B, 137, 1508–1509 (1965).

    Article  ADS  Google Scholar 

  19. A. G. Zvenigorodskij, V. A. Zherebtsov, L. M. Lazarev, et al., The Library of Evaluated and Experimental Data on Charged Particles for Fusion Application (SaBa), IAEANDS-191 (1999).

  20. D. West and A. Sherwood, “Measurements of thick-target (α, n) yields from light elements,” Ann. Nucl. Energy, 9, 551–577 (1982).

    Article  Google Scholar 

  21. L. Zwan and K. Geiger, “The 10B(α, n)13N, 13N* cross section for α-energies from 1.0 to 5 MeV,” Nucl. Phys. A, 216, 188–198 (1973).

    Article  ADS  Google Scholar 

  22. L. Zwan and K. Geiger, “The 11B(α, n)14N cross section for α-energies up to 8 MeV,” Nucl. Phys. A, 246, 93–103 (1975).

    Article  ADS  Google Scholar 

  23. J. Calvet, N. Gale, J. Garg, and K. Ranavataram, “Neutron angular distributions from the reaction 11B(α, n)14N,” Nucl. Phys., 31, 471–477 (1962).

    Article  Google Scholar 

  24. G. Mani and G. Dutt, “Reaction mechanism for the 11B(α, n)14N reaction,” Nucl. Phys., 78, 613–624 (1966).

    Article  Google Scholar 

  25. S. Harissopulos, H. Becker, J. Hammer, et al., “Cross section of the 13C(α, n)16O reaction: a background for the measurement of geo-neutrinos,” Phys. Rev. C, 72, 062801, 1–5 (2005).

    Google Scholar 

  26. J. Bair and F. Haas, “Total neutron yield from the reaction 13C(α, n)16O and 17,18O(α, n)-Ne,” Phys. Rev. C, 7, No. 4, 1356–1364 (1973).

    Article  ADS  Google Scholar 

  27. J. Schiffer, A. Kraus, and J. Risser, “Analysis of angular distributions in the 13C(α, n)16O reaction,” Phys. Rev., 105, No. 6, 1811–1815 (1957).

    Article  ADS  Google Scholar 

  28. K. Sekharam, A. Divatia, M. Mehta, et al., “13C(α, n)16O reaction cross section between 1.55 and 5.57 MeV,” Phys. Rev., 156, No. 4, 1187–1193 (1967).

    Article  ADS  Google Scholar 

  29. G. Kerr, J. Morris, and J. Risser, “Energy levels of 17O from 13C(α, α0)13C and 13C(α, n)16O,” Nucl. Phys. A, 110, 637–656 (1968).

    Article  ADS  Google Scholar 

  30. A. Robb,W. Scher, and E. Sheldon, “Spin and parity assignments for 17O levels from the 13C(α, n)16Og.s reaction,” Nucl. Phys. A, 147, 423–448 (1970).

    Article  ADS  Google Scholar 

  31. W. Gruhle, W. Schmidt, and W. Burgmer, “The 14N(α, n) and 16O(d, n) excitation functions,” Nucl. Phys. A, 186, 257–263 (1972).

    Article  ADS  Google Scholar 

  32. V. A. Vukolov and F. E. Chukreev, “On the neutron yield from (α, n) reactions on nuclides of oxygen and fluorine isotopes,” in: The Physics of the Atomic Nucleus and Elementary Particles, Moscow (1983), Pt. 2, pp. 218–223.

  33. L. Hansen, J. Anderson, J. McClure, et al., “The (α, n) cross section on 17O and 18O between 5 and 12.5 MeV,” Nucl. Phys. A, 98, 23–32 (1967).

    Article  ADS  Google Scholar 

  34. V. I. Bulanenko, “On the neutron yield from the reaction (α, n) on oxygen,” At. Énerg., 47, No. 1, 28–31 (1979).

    Google Scholar 

  35. A. G. Khabakhpashev and E. M. Tsenter, “Measurement of the lifetime of the first excited level of 21Ne,” Zh. Eksp. Teor. Fiz., 37, No. 4(10), 991–993 (1959).

  36. E. M. Tsenter, A. G. Khabakhpashev, and I. A. Pirkin, “γ-Rays from the neutron source Po–18O,” Zh. Eksp. Teor. Fiz., pp. 1133–1134.

  37. I. S. Giles and M. Peisah, “A survey of the analytical significance of prompt gamma-rays induced by 5 MeV alphaparticles,” J. Radioanal. Chem., 50, 307–360 (1979).

    Article  Google Scholar 

  38. G. Moss and J. Caldwell, “Assay of TRU waste containing (α, n) sources,” Nucl. Mater. Manag., 15, 427–431 (1986).

    Google Scholar 

  39. E. Lees and D. Lindley, “Neutron production from (α, n)-reaction in 241AmO2,” Ann. Nucl. Energy, 5, 133–139 (1978).

    Article  Google Scholar 

  40. M. Balakrishnan, S. Kailas, and M. Mehta, “A study of the reaction 19F(α, n)22Na in the bombarding energy range 2.6 to 5.1 MeV,” Pramana, 10, 329–338 (1978).

    Article  ADS  Google Scholar 

  41. E. Norman, T. Chup, K. Lesko, et al., “22Na production cross section from the 19F(α, n) reaction,” Phys. Rev. C, 30, 1339–1340 (1984).

    Article  ADS  Google Scholar 

  42. L. Zwan and K. Geiger, “Energy levels in 23Na from the 19F(α, n) reaction,” Nucl. Phys. A, 284, 189–198 (1977).

    Article  ADS  Google Scholar 

  43. E. Norman, K. Lesko, T. Chup, et al., “Gamma-ray production cross section for a-particle induced reactions on 19F and 23Na,” Rad. Eff., 94, 307–310 (1986).

    Article  Google Scholar 

  44. R. Freeman and G. Mani, “Levels in 23Na from alpha bombardment of 19F,” Nucl. Phys., 51, 593–603 (1964).

    Article  Google Scholar 

  45. V. V. Ovechkin, “Gamma and neutron radiation from 239Pu fluorides,” At. Énerg., 48, No. 1, 48–49 (1980).

    Google Scholar 

  46. R. Batchelor and J. Towler, “Neutron spectra and differential cross sections of the reactions 19F(α, n)22Na and 27Al(α, n)30P,” Proc. Phys. Soc., 73, 307–309 (1959).

    Article  ADS  Google Scholar 

  47. G. N. Vlaskin, V. V. Ovechkin, and V. I. Bulanenko, “Neutron and photon yield as a result of the reaction 19F(α, n, γ), 19F(α, p, γ), and 19F(α, α′, γ),” in: 4th Int. Conf. Management, Control, and Physical Protections of Nuclear Materials, Oct. 19–23, 2009, pp. 326–333.

  48. J. Bair and J. Gomez del Campo, “Neutron yields from alpha-particle bombardment,” Nucl. Sci. Eng., 71, 18–28 (1979).

    Google Scholar 

  49. G. Doukellis and J. Rapaport, “The 26Mg(p, n)26Al and 23Na(α, n)26Al reactions near threshold,” Nucl. Phys. A, 467, 511–527 (1987).

    Article  ADS  Google Scholar 

  50. R. Skelton and R. Kavanagh, “26Mg(p, n)26Al and 23Na(α, n)26Al reaction,” Phys. Rev. C, 35, No. 1, 45–54 (1987).

    Article  ADS  Google Scholar 

  51. J. Roberts, Neutron Yields of Several Light Elements Bombarded with Polonium Alpha Particles, Los Alamos Lab. Rep. MDDC-731 (1944).

  52. E. Norman, T. Chup, K. Lesko, and P. Schwalbach, “26g,mAl production cross section from the 23Na(α, n)26Al reaction,” Nucl. Phys. A, 390, 561–572 (1982).

    Article  ADS  Google Scholar 

  53. L. Zwan and K. Geiger, “Cross section for the 25Mg(α, n)28Si reaction for E α < 4.8 MeV,” Nucl. Sci. Eng., 79, 197–201 (1981).

    Google Scholar 

  54. M. Anderson, L. Mitchell, M. Sevior, and D. Sargood, “25Mg(α, n)28Si and 26Mg(α, n)29Si as neutron sources in explosive neon burning,” Nucl. Phys. A, 405, 170–178 (1983).

    Article  ADS  Google Scholar 

  55. J. Bair and H. Willard, “Level structure in 22Ne and 30Si from the reactions 18O(α, n)21Ne and 26Mg(α, n)29Si,” Phys. Rev., 128, No. 1, 299–304 (1962).

    Article  ADS  Google Scholar 

  56. D. Flyn, K. Sekharan, B. Hiller, et al., “Cross section and reaction rates for 23Na(p, n)23Mg, 27Al(p, n)27Si, 27Al(α, n)30P, 29Si(α, n)32S and 30Si(α, n)33S,” Phys. Rev. C, 18, No. 4, 1566–1576 (1978).

    Article  ADS  Google Scholar 

  57. A. Howard, H. Jensen, M. Rios, et al., “Measurement and theoretical analysis of some reaction rates of interest in silicon burning,” Astrophys. J., 188, 131–139 (1974).

    Article  ADS  Google Scholar 

  58. M. Balakrishnan, M. Mehta, and A. Kailas, “29Si(α, n)32S reaction from 2.15 to 5.25 MeV bombarding energy,” Phys. Rev. C, 11, No. 1, 54–63 (1975).

    Article  ADS  Google Scholar 

  59. W. McMurray, D. Holz, and I. Herden, “Study of the reactions 31P(α, p)34S and 29Si(α, n)32S,” Z. Phys., 247, 453–465 (1971).

    Article  ADS  Google Scholar 

  60. R. Hirko and A. Jones, “Studies of low-lying levels of 33S by the 30Si(α, n)33S reaction,” Nucl. Phys. A, 192, 329–340 (1972).

    Article  ADS  Google Scholar 

  61. S. Flugge (ed.), Encyclopedia of Physics, Vol. 38/2, Neutrons and Related Gamma Ray Problems, Berlin (1959).

  62. A. Scott, A. Morton, C. Tingwell, et al., “Cross sections and thermonuclear reaction rates for 41K(α, n)44Sc and 41K(α, p)44Ca,” Nucl. Phys. A, 523, 373–385 (1991).

    Article  ADS  Google Scholar 

  63. Y. Feige, B. Oltman, and J. Kastner, “Production rates of neutrons in soils due to natural radioactivity,” J. Geophys. Res., 73, 3135–3142 (1968).

    Article  ADS  Google Scholar 

  64. A. Scott, A. Morton, S. Tims, et al., “The 34S(α, γ)38Ar, 34S(α, n)37Ar and 34S(α, p)37Cl cross section,” Nucl. Phys., 552, 363–377 (1994).

    Article  Google Scholar 

  65. H. Matsunobu, T. Oku, S. Iijima, et al., Data Book for Calculating Neutron Yields from (α, n) Reaction and Spontaneous Fission, JAERI 1324 (1992).

  66. G. V. Gorshkov,V. A. Zyabkin, N. M. Lyatkovskaya, and O. S. Tsvetkov, Natural Neutron Background of the Atmosphere and Earth’s Crust, Atomizdat, Moscow (1966).

    Google Scholar 

  67. S. Croft and R. McElroy, “The thick target (α, n) production yield of sulphur,” in: 43rd Ann. Meeting INMM, USA, Orlando, June 23–27, 2002, Paper 381.

  68. H. Martin, Reaction Gamma Rays in Plutonium Compounds, Mixtures, and Alloys, USA RF Rep. RFP-2832 TID- 4500-R62 (1975).

  69. I. P. Selinov, Tables of Atoms, Atomic Nuclei, and Subatomic Particles, Center of Intern. Data on Atomic Energy and Nuclides of the Russian Academy of Sciences and the Ministry on Atomic Energy of the Russian Federation (1998).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Atomnaya Énergiya, Vol. 117, No. 5, pp. 287–293, November, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlaskin, G.N., Khomyakov, Y.S. & Bulanenko, V.I. Neutron Yield of the Reaction (α, n) on Thick Targets Comprised of Light Elements. At Energy 117, 357–365 (2015). https://doi.org/10.1007/s10512-015-9933-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-015-9933-5

Keywords

Navigation