Skip to main content
Log in

Nuclear field theory predictions for 11Li and 12Be: Shedding light on the origin of pairing in nuclei

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Recent data resulting from studies of two-nucleon transfer reaction on 11Li, analyzed through a unified nuclear-structure-direct-reaction theory have provided strong direct as well as indirect confirmation, through the population of the first excited state of 9Li and of the observation of a strongly quenched ground state transition, of the prediction that phonon-mediated pairing interaction is the main mechanism binding the neutron halo of the 8.5-ms-lived 11Li nucleus. In other words, the ground state of 11Li can be viewed as a neutron Cooper pair bound to the 9Li core, mainly through the exchange of collective vibration of the core and of the pigmy resonance arizing from the sloshing back and forth of the neutron halo against the protons of the core, the mean field leading to unbound two-particle states, a situation essentially not altered by the bare nucleon-nucleon interaction acting between the halo neutrons. Two-neutron pick-up data, together with (t, p) data on 7Li, suggest the existence of a pairing vibrational band based on 9Li, whose members can be excited with the help of inverse kinematic experiments as was done in the case of 11Li(p, t)9Li reaction. The deviation from harmonicity can provide insight into the workings of medium polarization effects on Cooper-pair nuclear pairing, let alone specific information concering the “rigidity” of the N = 6 shell closure. Further information concerning these questions is provided by the predicted absolute differential cross sections σ abs associated with the reactions 12Be(p, t)10Be(g.s.) and 12Be(p, t)10Be(pv) (≈10Be(p, t)8Be(g.s.)). In particular, concerning this last reaction, predictions of σ abs can change by an order of magnitude depending on whether the halo properties associated with the d 5/2 orbital are treated selfconsistently in calculating the ground state correlations of the (pair removal) mode, or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. M. Brink and R. A. Broglia, Nuclear Superfluidity (Cambridge Univ. Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  2. P.W. Anderson, Phys. Rev. 112, 1900 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Wölfle, Prog. Low Temp. Phys. VII-A, 191 (1978).

    Article  Google Scholar 

  4. R. A. Broglia, O. Hansen, and C. Riedel, Adv. Nucl. Phys. 6, 287 (1973).

    Google Scholar 

  5. F. Barranco, R. A. Broglia, G. Gori, E. Vigezzi, P. F. Bortignon, and J. Terasaki, Phys. Rev. Lett. 83, 2147 (1999).

    Article  ADS  Google Scholar 

  6. F. Barranco, R. A. Broglia, G. Colò, G. Gori, E. Vigezzi, and P. F. Bortignon, Eur. Phys. J. A 21, 57 (2004).

    Article  ADS  Google Scholar 

  7. A. Idini, F. Barranco, and E. Vigezzi, Phys. Rev. C 85, 014331 (2012).

    Article  ADS  Google Scholar 

  8. A. V. Avdeenkov and S. Kamerdzhiev, JETP Lett. 69, 715 (1999).

    Article  ADS  Google Scholar 

  9. S. Kamerdzhiev and E. E. Saperstein, Eur. Phys. J. A 37, 333 (2008).

    Article  ADS  Google Scholar 

  10. S. S. Pankratov, M. V. Zverev, M. Baldo, et al., Phys. Rev. C 84, 014321 (2011).

    Article  ADS  Google Scholar 

  11. E. R. Flynn, G. J. Igo, and R. A. Broglia, Phys. Lett. B 41, 397 (1972).

    Article  ADS  Google Scholar 

  12. P. F. Bortignon, R. A. Broglia, and D. R. Bès, Phys. Lett. B 76, 153 (1978).

    Article  ADS  Google Scholar 

  13. F. Barranco, P. F. Bortignon, R. A. Broglia, G. Colò, and E. Vigezzi, Eur. Phys. J.A 11, 385 (2001).

    Article  ADS  Google Scholar 

  14. G. Gori, F. Barranco, E. Vigezzi, and R. A. Broglia, Phys. Rev. C 69, 041302 (2004).

    Article  ADS  Google Scholar 

  15. D. R. Bès, R. A. Broglia, G. G. Dussel, et al., Nucl. Phys. A 260, 1 (1976).

    Article  ADS  Google Scholar 

  16. D. R. Bès, R. A. Broglia, G. G. Dussel, et al., Nucl. Phys. A 260, 27 (1976).

    Article  ADS  Google Scholar 

  17. D. R. Bès, R. A. Broglia, G. G. Dussel, et al., Nucl. Phys. A 260, 77 (1976).

    Article  ADS  Google Scholar 

  18. D. R. Bès and R. A. Broglia, in Problems of Vibrational Nuclei, Ed. by G. Alaga, V. Paar, and L. Sips (North-Holland, Amsterdam, 1975), p. 1.

  19. B. R. Mottelson, Rev. Mod. Phys. 48, 375 (1976).

    Article  ADS  Google Scholar 

  20. P. F. Bortignon, R. A. Broglia, D. R. Bès, and R. Liotta, Phys. Rept. 30, 305 (1977).

    Article  ADS  Google Scholar 

  21. R. A. Broglia, B. R. Mottelson, D. R. Bès, et al., Phys. Lett. B 64, 29 (1976).

    Article  ADS  Google Scholar 

  22. R. A. Broglia and A. Winther, Heavy Ion Reactions, 2nd ed. (Westview Press, Perseus Books, Boulder, 2005).

    Google Scholar 

  23. D. R. Bès and R. A. Broglia, Nucl. Phys. 80, 289 (1966).

    Article  Google Scholar 

  24. L. N. Cooper, Phys. Rev. 104, 1189 (1956).

    Article  ADS  MATH  Google Scholar 

  25. A. J. Leggett, Quantum Liquids (Oxford Univ. Press, Oxford, 2006).

    Book  Google Scholar 

  26. B. D. Josephson, Phys. Lett. 1, 251 (1962).

    Article  ADS  MATH  Google Scholar 

  27. M. H. Cohen, L. Falicov, and J. C. Phillips, Phys. Rev. Lett. 8, 316 (1962).

    Article  ADS  MATH  Google Scholar 

  28. G. Potel, A. Idini, F. Barranco, E. Vigezzi, and R. A. Broglia, arXiv:0906.4298v1 [nucl-th].

  29. R. P. Feynman, Quantum Electrodynamics (Advanced Book Program, Benjamin, Reading, 1961).

    Google Scholar 

  30. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1975), Vol. 2.

    Google Scholar 

  31. G. Potel, F. Barranco, E. Vigezzi, and R. A. Broglia, Phys. Rev. Lett. 105, 172502 (2010).

    Article  ADS  Google Scholar 

  32. G. Potel, F. Barranco, F. Marini, A. Idini, E. Vigezzi, and R. A. Broglia, Phys. Rev. Lett. 107, 092501 (2011).

    Article  ADS  Google Scholar 

  33. G. Potel and R. A. Broglia, in 50 Years of Nuclear BCS, Ed. by R. A. Broglia and V. Zelevinsky (World Scientific, Singapore, 2013).

  34. G. Potel, A. Idini, F. Barranco, E. Vigezzi, and R. A. Broglia, Phys. Rev. C 87, 054321 (2013).

    Article  ADS  Google Scholar 

  35. G. Potel, A. Idini, F. Barranco, E. Vigezzi, and R. A. Broglia, Rep. Prog. Phys. 76, 106301 (2013).

    Article  ADS  Google Scholar 

  36. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  37. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969), Vol. 1.

    Google Scholar 

  38. C. Bachelet, G. Audi, C. Gaulard, et al., Phys. Rev. Lett. 100, 182501 (2008).

    Article  ADS  Google Scholar 

  39. M. Smith, M. Brodeur, T. Brunner, et al., Phys. Rev. Lett. 101, 202501 (2008).

    Article  ADS  Google Scholar 

  40. I. Tanihata, M. Alcorta, D. Bandyopadhyay, et al., Phys. Rev. Lett. 100, 192502 (2008).

    Article  ADS  Google Scholar 

  41. P. G. Young and R. H. Stokes, Phys. Rev. C 4, 1597 (1971).

    Article  ADS  Google Scholar 

  42. F. Ajzenberg-Selove, E. R. Flynn, and O. Hansen, Phys. Rev. C 17, 1283 (1978).

    Article  ADS  Google Scholar 

  43. H. An and C. Cai, Phys. Rev. C 73, 054605 (2006).

    Article  ADS  Google Scholar 

  44. C. Mahaux, P. F. Bortignon, R. A. Broglia, and C. H. Dasso, Phys. Rep. 120, 1 (1985).

    Article  ADS  Google Scholar 

  45. R. A. Broglia, V. Paar, and D. R. Bès, Phys. Lett. B 37, 159 (1971).

    Article  ADS  Google Scholar 

  46. J. P. Fernandez-Garcia, M. Rodriguez-Gallardo, M.A.G. Alvarez, and A. M. Moro, Phys. Lett. B 693, 310 (2010).

    Article  ADS  Google Scholar 

  47. J. P. Fernandez-Garcia, M. A. G. Alvarez, A. M. Moro, and M. Rodriguez-Gallardo, Nucl. Phys. A 840, 19 (2010).

    Article  ADS  Google Scholar 

  48. R. A. Broglia, G. Pollarolo, and A. Winther, Nucl. Phys. A 361, 307 (1981).

    Article  ADS  Google Scholar 

  49. G. Pollarolo, R. A. Broglia, and A. Winther, Nucl. Phys. A 406, 369 (1983).

    Article  ADS  Google Scholar 

  50. W. Dickhoff and D. van Neck, Many-Body Theory Exposed: Propagator Description of Quantum Mechanics in Many-Body Systems (World Scientific, Singapore, 2005).

    Book  Google Scholar 

  51. B. Jennings, arXiv:1102.3721 [nucl-th].

  52. R. Kanungo et al., Study of Nuclear Pairing Through 12 Be(p, t)Reaction, TRIUMF approved proposal number S1338 (2012).

    Google Scholar 

  53. D. E. Alburger, E. K. Warburton, A. Gallmann, and D. H. Wilkinson, Phys. Rev. 185, 1242 (1969).

    Article  ADS  Google Scholar 

  54. H. T. Fortune, G.-B. Liu, and D. E. Alburger, Phys. Rev. C 50, 1355 (1994).

    Article  ADS  Google Scholar 

  55. R. A. Broglia, C. Riedel, and T. Udagawa, Nucl. Phys. A 169, 225 (1971).

    Article  ADS  Google Scholar 

  56. R. A. Broglia, C. Riedel, and T. Udagawa, Nucl. Phys. A 184, 23 (1972).

    Article  ADS  Google Scholar 

  57. B. R. Mottelson, in Proceedings of the International School of Physics Enrico Fermi, Course XV: Nuclear Spectroscopy (Academic Press, New York, 1962), p. 44.

    Google Scholar 

  58. D. Bes and R. A. Sorensen, Adv. Nucl. Phys. 2, 129 (1969).

    Article  Google Scholar 

  59. B. F. Bayman, Seniority, Quasiparticles and Collective Vibrations, Lecture notes at the Palmer Physical Laboratory (Princeton University, 1960, unpublished).

    Google Scholar 

  60. D. R. Bes and R. A. Broglia, Phys. Rev. C 3, 2349 (1971).

    Article  ADS  Google Scholar 

  61. E. R. Flynn et al., Phys. Rev. C 3, 2371 (1971).

    Article  ADS  Google Scholar 

  62. D. R. Bes and R. A. Broglia, Phys. Rev. C 3, 2389 (1971).

    Article  ADS  Google Scholar 

  63. M. G. Mayer and J. H. D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley and Sons, New York, 1955).

    MATH  Google Scholar 

  64. A. Bohr, Rev.Mod. Phys. 48, 365 (1976).

    Article  ADS  Google Scholar 

  65. H. Esbensen and G. F. Bertsch, Phys. Rev. C 28, 355 (1983).

    Article  ADS  Google Scholar 

  66. F. Barranco and R. A. Broglia, Phys. Rev. Lett. 59, 2724 (1987).

    Article  ADS  Google Scholar 

  67. S. G. Nilsson, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 29(16) (1955).

    Google Scholar 

  68. G. C. Ball, L. Buchmann, B. Davids, et al., J. Phys. G 38, 024003 (2011).

    Article  ADS  Google Scholar 

  69. N. Bohr, Nature 137, 34 (1936).

    Article  Google Scholar 

  70. D. R. Bes and J. Kurchan, The Treatment of Collective Coordinates inMany-Body Systems (World Scientific, Singapore, 1990).

    Google Scholar 

  71. J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).

    Article  ADS  MATH  Google Scholar 

  72. W. E. Pickett, in Solid State Physics: Fullerenes, Ed. by H. Ehrenreich and F. Spaepen (Academic Press, San Diego, 1994).

  73. C. M. Lieber and Z. Zhang, in Solid State Physics: Fullerenes, Ed. by H. Ehrenereich and F. Spaepen (Academic Press, San Diego, 1994).

  74. O. Gunnarsson, Alkali-Doped Fullerides: Narrow-Band Solids with Unusual Properties (World Scientific, Singapore, 2004).

    Book  Google Scholar 

  75. C. C. Chancey and M. C. M. O’Brien, The Jahn-Teller Effect in C 60 and Other Icosahedral Complexes (Princeton Univ. Press, Princeton, 1997).

    Google Scholar 

  76. M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Princeton Univ. Press, Princeton, 1997).

    Google Scholar 

  77. R. A. Broglia, G. Colò, G. Onida, and H. E. Roman, Solid State Physics of Finite Systems: Metal Clusters, Fullerenes, Atomic Wires (Springer, Berlin, Heidelberg, 2004).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Vigezzi.

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potel, G., Idini, A., Barranco, F. et al. Nuclear field theory predictions for 11Li and 12Be: Shedding light on the origin of pairing in nuclei. Phys. Atom. Nuclei 77, 941–968 (2014). https://doi.org/10.1134/S106377881407014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377881407014X

Keywords

Navigation