Skip to main content
Log in

Deformed even-even nuclei in a quark-meson coupling model with tensor coupling

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

In this work, a new quark-meson coupling model is employed to study the ground-state properties of axially deformed even-even nuclei. Two essential ingredients, namely, density dependence of quark mass and tensor coupling, play important roles in our approach. In particular, it is the first time that the deformed quark-meson coupling calculation with tensor coupling is applied to study the properties of finite nuclei. The present work involves a systematical study of nuclei ranging from Z = 50 to Z = 82 . The ground-state binding energies, quadrupole deformations, shape coexistence, two-neutron separation energies and the root-mean-square charge radii are calculated and compared with the experimental data. It is shown that the ground-state properties of the deformed nuclei are reasonably well reproduced by a model based on the sub-hadronic degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).

    Article  ADS  Google Scholar 

  2. P. Ring, Prog. Part. Nucl. Phys. 46, 165 (2001).

    Article  ADS  Google Scholar 

  3. G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997).

    Article  ADS  Google Scholar 

  4. G.A. Lalazissis, P. Ring, Phys. Lett. B 427, 225 (1998).

    Article  ADS  Google Scholar 

  5. G.A. Lalazissis et al., Phys. Lett. B 671, 36 (2009).

    Article  ADS  Google Scholar 

  6. B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005).

    Article  ADS  Google Scholar 

  7. J. Piekarewicz, Phys. Rev. C 73, 044325 (2006).

    Article  ADS  Google Scholar 

  8. F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82, 055803 (2010).

    Article  ADS  Google Scholar 

  9. B.K. Agrawal, A. Sulaksono, P.-G. Reinhard, Nucl. Phys. A 882, 1 (2012).

    Article  ADS  Google Scholar 

  10. Z.Z. Ren, A. Faessler, A. Bobyk, Phys. Rev. C 57, 2752 (1998).

    Article  ADS  Google Scholar 

  11. Z.Z. Ren, F. Tai, D.H. Chen, Phys. Rev. C 66, 064306 (2002).

    Article  ADS  Google Scholar 

  12. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005).

    Article  ADS  Google Scholar 

  13. P.A.M. Guichon, Phys. Lett. B 200, 235 (1988).

    Article  ADS  Google Scholar 

  14. S. Fleck, W. Bentz, K. Shimizu, K. Yazaki, Nucl. Phys. A 510, 731 (1990).

    Article  ADS  Google Scholar 

  15. K. Saito, A.W. Thomas, Phys. Lett. B 327, 9 (1994).

    Article  ADS  Google Scholar 

  16. D.P. Menezes, P.K. Panda, C. Providência, Phys. Rev. C 72, 035802 (2005).

    Article  ADS  Google Scholar 

  17. P. Papazoglou, S. Schramm, J. Schaffner-Bielich, H. Stöcker, W. Greiner, Phys. Rev. C 57, 2576 (1998).

    Article  ADS  Google Scholar 

  18. P. Wang, Z.Y. Zhang, Y.W. Yu, R.K. Su, H.Q. Song, Nucl. Phys. A 688, 791 (2001).

    Article  ADS  Google Scholar 

  19. C. Wu, W.L. Qian, R.K. Su, Phys. Rev. C 72, 035205 (2005).

    Article  ADS  Google Scholar 

  20. C. Wu, W.L. Qian, R.K. Su, Phys. Rev. C 77, 015203 (2008).

    Article  ADS  Google Scholar 

  21. C. Wu, R.K. Su, J. Phys. G: Nucl. Part. Phys. 36, 095101 (2009).

    Article  ADS  Google Scholar 

  22. C. Wu, R.K. Su, J. Phys. G: Nucl. Part. Phys. 35, 125001 (2008).

    Article  ADS  Google Scholar 

  23. G.N. Fowler, S. Raha, R.M. Weiner, Z. Phys. C 9, 271 (1981).

    Article  ADS  Google Scholar 

  24. S. Chakrabarty, S. Raha, B. Sinha, Phys. Lett. B 229, 112 (1989).

    Article  ADS  Google Scholar 

  25. C. Wu, Z.Z. Ren, J. Phys. G: Nucl. Part. Phys. 37, 105110 (2010).

    Article  ADS  Google Scholar 

  26. H. Guo, T.V. Chossy, W. Stocker, Phys. Rev. C 61, 014307 (1999).

    Article  Google Scholar 

  27. R.L. Xu, C. Wu, Z.Z. Ren, S. Kumar, J. Liu, Nucl. Phys. A 907, 1 (2013).

    Article  ADS  Google Scholar 

  28. R.J. Furnstahl, B.D. Serot, H.B. Tang, Nucl. Phys. A 615, 441 (1997).

    Article  ADS  Google Scholar 

  29. T.S. Biró, J. Zimányi, Phys. Lett. B 391, 1 (1997).

    Article  ADS  Google Scholar 

  30. M. Del Estal, M. Centelles, X. Viñas, Nucl. Phys. A 650, 443 (1999).

    Article  ADS  Google Scholar 

  31. F. Sarazin et al., Phys. Rev. Lett. 84, 5062 (2000).

    Article  ADS  Google Scholar 

  32. M.P. Carpenter, R.V.F. Janssens, S. Zhu, Phys. Rev. C 87, 041305(R) (2013).

    Article  ADS  Google Scholar 

  33. S. Cwiok, P.H. Heenen, W. Nazarewicz, Nature 433, 705 (2005).

    Article  ADS  Google Scholar 

  34. Z.Z. Ren, Phys. Rev. C 65, 051304(R) (2002).

    Article  ADS  Google Scholar 

  35. T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).

    Article  ADS  Google Scholar 

  36. T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010).

    Article  ADS  Google Scholar 

  37. G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).

    Article  ADS  Google Scholar 

  38. Z.Z. Ren, Z.Y. Zhu, Y.H. Cai, G.O. Xu, Phys. Lett. B 380, 241 (1996).

    Article  ADS  Google Scholar 

  39. R.J. Furnstahl, C.E. Price, G.E. Walker, Phys. Rev. C 36, 2590 (1987).

    Article  ADS  Google Scholar 

  40. S.K. Patra, C.L. Wu, C.R. Praharaj, R.K. Gupta, Nucl. Phys. A 651, 117 (1999).

    Article  ADS  Google Scholar 

  41. J.P. Maharana, Y.K. Gambhir, J.A. Sheikh, P. Ring, Phys. Rev. C 46, R1163 (1992).

    Article  ADS  Google Scholar 

  42. P.-G. Reinhard, B.K. Agrawal, Int. J. Mod. Phys. E 20, 1379 (2011).

    Article  ADS  Google Scholar 

  43. L.S. Warrier, Y.K. Gambhir, Phys. Rev. C 49, 871 (1994).

    Article  ADS  Google Scholar 

  44. W.Z. Jiang, Z.Z. Ren, T.T. Wang, Y.L. Zhao, Z.Y. Zhu, Eur. Phys. J. A 25, 29 (2005).

    Article  Google Scholar 

  45. K. Saito, K. Tsushima, A.W. Thomas, Prog. Part. Nucl. Phys. 58, 1 (2007).

    Article  ADS  Google Scholar 

  46. R.L. Xu, C. Wu, G.L. Ma, D.Q. Fang, Z.Z. Ren, Phys. Rev. C 87, 014335 (2013).

    Article  ADS  Google Scholar 

  47. Y.K. Gambhir, P. Ring, A. Thimet, Ann. Phys. (NY) 198, 132 (1990).

    Article  ADS  Google Scholar 

  48. M. Wang et al., Chin. Phys. C 36, 1603 (2012).

    Article  ADS  Google Scholar 

  49. I. Angeli, K.P. Marinova, At. Data Nucl. Data Tables 99, 69 (2013).

    Article  ADS  Google Scholar 

  50. S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).

    Article  ADS  Google Scholar 

  51. X. Campi, D.W. Sprung, Nucl. Phys. A 194, 401 (1972).

    Article  ADS  Google Scholar 

  52. P. Möller, J.R. Nix, Nucl. Phys. A 536, 20 (1992).

    Article  ADS  Google Scholar 

  53. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatechi, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  54. S. Raman et al., At. Data Nucl. Data Tables 78, 1 (2001).

    Article  ADS  Google Scholar 

  55. P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, New York, 1980).

  56. P. Ring, Y.K. Gambhir, G.A. Lalazissis, Comput. Phys. Commun. 105, 77 (1997).

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. Xu.

Additional information

Communicated by J. Wambach

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, R.L., Wu, C., Qian, W.L. et al. Deformed even-even nuclei in a quark-meson coupling model with tensor coupling. Eur. Phys. J. A 49, 141 (2013). https://doi.org/10.1140/epja/i2013-13141-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2013-13141-5

Keywords

Navigation