Skip to main content
Log in

Missing mass spectroscopy on oxygen isotopes beyond the proton-drip line: mirror symmetry of nuclear shell evolution

  • Review
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Missing mass spectroscopy of the proton-rich 12O and 13O nuclei was performed via the neutron transfer (p, t and (p, d reactions, respectively, using a 14O beam of 51 MeV/u at GANIL (Grand Accélérateur National d’Ions Lourds). In addition to the ground states, an excited state of 12O at 1.8(4) MeV and two excited states of 13O at 2.8(3) and 4.2(3) MeV were observed. Spin-parity and/or spectroscopic factors were obtained from the comparison of the differential cross-sections to distorted-wave calculations. The excited state of 12O with a suggested spin-parity of 0+ or 2+ has a significantly low excitation energy, indicating that the proton shell closure at Z = 8 vanishes in 12O. The spin-parity of 1/2+ was suggested for the 2.8MeV state, which implies that the proton shell gap is weak in 13O, whereas the large spectroscopic factor extracted from the 14O(p , d reaction indicates that the ground 3/2 state remains dominated by normal p-shell configurations. These features of 12O and 13O have marked similarities with their neutron-rich mirror partners 12Be and 13B, respectively, demonstrating mirror symmetry in the fading of the shell closure at magic numbers 8 near the drip lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

    ADS  Google Scholar 

  2. M. Hori et al., Phys. Rev. Lett. 91, 123401 (2003).

    ADS  Google Scholar 

  3. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).

    MathSciNet  ADS  MATH  Google Scholar 

  4. A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. I (W.A. Benjamin, New York, 1968).

  5. J.B. Ehrman, Phys. Rev. 81, 412 (1951).

    ADS  Google Scholar 

  6. R.G. Thomas, Phys. Rev. 88, 1109 (1952).

    ADS  MATH  Google Scholar 

  7. Y. Ichikawa et al., Phys. Rev. C 80, 044302 (2009).

    MathSciNet  ADS  Google Scholar 

  8. A.P. Zuker et al., Phys. Rev. Lett. 89, 142502 (2002).

    ADS  Google Scholar 

  9. J. Ekman et al., Phys. Rev. Lett. 92, 132502 (2004).

    ADS  Google Scholar 

  10. M.A. Bentley et al., Phys. Rev. Lett. 97, 132501 (2006).

    ADS  Google Scholar 

  11. A. Gadea et al., Phys. Rev. Lett. 97, 152501 (2006).

    ADS  Google Scholar 

  12. D. Suzuki et al., Phys. Rev. Lett. 103, 152503 (2009).

    ADS  Google Scholar 

  13. W.D. Knight et al., Phys. Rev. Lett. 52, 2141 (1984).

    ADS  Google Scholar 

  14. S. Tarucha et al., Phys. Rev. Lett. 77, 3613 (1996).

    ADS  Google Scholar 

  15. M.G. Mayer, Phys. Rev. 74, 235 (1948).

    ADS  Google Scholar 

  16. M.G. Mayer, Phys. Rev. 75, 1969 (1949).

    ADS  Google Scholar 

  17. O. Haxel, J.H.D. Jensen, H.E. Suess, Phys. Rev. 75, 1766 (1949).

    ADS  Google Scholar 

  18. D.H. Wilkinson, D.E. Alburger, Phys. Rev. 113, 563 (1959).

    ADS  Google Scholar 

  19. I. Talmi, I. Unna, Phys. Rev. Lett. 4, 469 (1960).

    ADS  Google Scholar 

  20. C. Thibault et al., Phys. Rev. C 12, 644 (1975).

    ADS  Google Scholar 

  21. C. Détraz et al., Nucl. Phys. A 394, 378 (1983).

    ADS  Google Scholar 

  22. D.E. Alburger et al., Phys. Rev. C 17, 1525 (1978).

    ADS  Google Scholar 

  23. C. Détraz et al., Phys. Rev. C 19, 164 (1979).

    ADS  Google Scholar 

  24. D. Guillemaud-Mueller et al., Nucl. Phys. A 426, 37 (1984).

    ADS  Google Scholar 

  25. J.P. Dufour et al., Nucl. Instrum. Methods A 248, 267 (1986).

    ADS  Google Scholar 

  26. B.M. Sherrill et al., Nucl. Instrum. Methods B 56-57, 1106 (1991).

    ADS  Google Scholar 

  27. T. Kubo et al., Nucl. Instrum. Methods B 70, 309 (1992).

    ADS  Google Scholar 

  28. H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992).

    ADS  Google Scholar 

  29. T. Kubo et al., IEEE Trans. Appl. Supercond. 17, 1069 (2007).

    MathSciNet  ADS  Google Scholar 

  30. ISOLDE Collaboration, Nucl. Instrum. Methods B 70, 41 (1992).

    ADS  Google Scholar 

  31. L. Buchmann et al., Nucl. Instrum. Methods B 26, 151 (1987).

    ADS  Google Scholar 

  32. D. Darquennes et al., Phys. Rev. C 42, R804 (1990).

    ADS  Google Scholar 

  33. D.K. Olsen et al., Nucl. Phys. A 570, 243c (1994).

    ADS  Google Scholar 

  34. REX-ISOLDE Collaboration, Hyperfine Interact. 129, 43 (2000).

    Google Scholar 

  35. SPIRAL Group, A.C.C. Villari, Nucl. Phys. A 693, 465 (2001).

    ADS  Google Scholar 

  36. T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).

    ADS  Google Scholar 

  37. R.W. Ibbotson et al., Phys. Rev. Lett. 80, 2081 (1998).

    ADS  Google Scholar 

  38. H. Iwasaki et al., Phys. Lett. B 491, 8 (2000).

    ADS  Google Scholar 

  39. O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).

    ADS  Google Scholar 

  40. H. Iwasaki et al., Phys. Lett. B 481, 7 (2000).

    ADS  Google Scholar 

  41. N. Aoi et al., Phys. Rev. Lett. 102, 012502 (2009).

    ADS  Google Scholar 

  42. K. Yoneda et al., Phys. Lett. B 499, 233 (2001).

    MathSciNet  ADS  Google Scholar 

  43. B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007).

    ADS  Google Scholar 

  44. N.A. Orr et al., Phys. Lett. B 258, 29 (1991).

    ADS  Google Scholar 

  45. F. Sarazin, Phys. Rev. Lett. 84, 5062 (2000).

    ADS  Google Scholar 

  46. A. Navin et al., Phys. Rev. Lett. 85, 266 (2000).

    ADS  Google Scholar 

  47. V. Guimaraes et al., Phys. Rev. C 61, 064609 (2000).

    ADS  Google Scholar 

  48. S.D. Pain et al., Phys. Rev. Lett. 96, 032502 (2006).

    ADS  Google Scholar 

  49. L.A. Riley et al., Phys. Rev. C 79, 051303(R) (2009).

    ADS  Google Scholar 

  50. T. Suzuki, R. Fujimoto, T. Otsuka, Phys. Rev. C 67, 044302 (2003).

    ADS  Google Scholar 

  51. T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).

    ADS  Google Scholar 

  52. G.A. Lalazissis et al., Phys. Lett. B 418, 7 (1998).

    ADS  Google Scholar 

  53. I. Hamamoto, Nucl. Phys. A 731, 211 (2004).

    ADS  Google Scholar 

  54. H. Sagawa, B.A. Brown, H. Esbensen, Phys. Lett. B 309, 1 (1993).

    ADS  Google Scholar 

  55. N. Itagaki, S. Okabe, K. Ikeda, Phys. Rev. C 62, 034301 (2000).

    ADS  Google Scholar 

  56. Y. Kanada-En’yo, H. Horiuchi, Phys. Rev. C 68, 014319 (2003).

    ADS  Google Scholar 

  57. S. Shimoura et al., Phys. Lett. B 560, 31 (2003).

    ADS  Google Scholar 

  58. N. Aoi et al., Phys. Rev. C 66, 014301 (2002).

    ADS  Google Scholar 

  59. C.J. Guess et al., Phys. Rev. C 80, 024305 (2009).

    ADS  Google Scholar 

  60. H. Iwasaki et al., Phys. Rev. Lett. 102, 202502 (2009).

    ADS  Google Scholar 

  61. F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).

    ADS  Google Scholar 

  62. G.J. KeKelis et al., Phys. Rev. C 17, 1929 (1978).

    ADS  Google Scholar 

  63. S. Mordechai et al., Phys. Rev. C 32, 999 (1985).

    ADS  Google Scholar 

  64. R.A. Kryger et al., Phys. Rev. Lett. 74, 860 (1995).

    ADS  Google Scholar 

  65. R. McPherson et al., Phys. Rev. 140, B1513 (1965).

    ADS  Google Scholar 

  66. J.E. Esterl et al., Phys. Lett. B 33, 287 (1970).

    ADS  Google Scholar 

  67. K. Asahi et al., Phys. Rev. C 41, 358 (1990).

    ADS  Google Scholar 

  68. H.H. Knudsen et al., Phys. Rev. C 72, 044312 (2005).

    ADS  Google Scholar 

  69. K. Matsuta et al., Phys. Lett. B 459, 81 (1999).

    ADS  Google Scholar 

  70. T. Teranishi et al., Nucl. Phys. A 718, 207c (2003).

    ADS  Google Scholar 

  71. B.B. Skorodumov et al., Phys. Rev. C 75, 024607 (2007).

    ADS  Google Scholar 

  72. A.A. Korsheninnikov et al., Phys. Lett. B 316, 38 (1993).

    ADS  Google Scholar 

  73. J.H. Kelley et al., Phys. Rev. C 56, R1206 (1997).

    ADS  Google Scholar 

  74. F. Maréchal et al., Phys. Rev. C 60, 034615 (1999).

    ADS  Google Scholar 

  75. F. Maréchal et al., Phys. Rev. C 60, 064623 (1999).

    ADS  Google Scholar 

  76. E. Khan et al., Phys. Lett. B 490, 45 (2000).

    ADS  Google Scholar 

  77. A. Lagoyannis et al., Phys. Lett. B 518, 27 (2001).

    ADS  Google Scholar 

  78. C. Jouanne, Phys. Rev. C 72, 014308 (2005).

    ADS  Google Scholar 

  79. E. Becheva et al., Phys. Rev. Lett. 96, 012501 (2006).

    ADS  Google Scholar 

  80. F. Skaza et al., Phys. Lett. B 619, 82 (2005).

    ADS  Google Scholar 

  81. F. Skaza et al., Phys. Rev. C 73, 044301 (2006).

    ADS  Google Scholar 

  82. L. Gaudefroy et al., Phys. Rev. Lett. 97, 092501 (2006).

    ADS  Google Scholar 

  83. N. Keeley et al., Phys. Lett. B 646, 222 (2007).

    ADS  Google Scholar 

  84. J. Lee et al., Phys. Rev. Lett. 104, 112701 (2010).

    ADS  Google Scholar 

  85. K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010).

    ADS  Google Scholar 

  86. E. Pollacco et al., Eur. Phys. J. A 25, 287 (2005).

    Google Scholar 

  87. A. Joubert, Proceedings of the Second Conference of the IEEE Particle Accelerator (IEEE, 1991) 594.

  88. R. Anne, Nucl. Instrum. Methods B 126, 279 (1997).

    ADS  Google Scholar 

  89. R. Rebmeister, Report No. CRN/PN, 1983-16 (CNRS Strasbourg Cent. Phys. Nucl., 1983).

  90. O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods B 266, 4657 (2008).

    ADS  Google Scholar 

  91. L. Bianchi et al., Nucl. Instrum. Methods A 276, 509 (1989).

    ADS  Google Scholar 

  92. P. Dolégiéviez et al., Nucl. Instrum. Methods A 564, 32 (2006).

    ADS  Google Scholar 

  93. S. Ottini-Hustache et al., Nucl. Instrum. Methods A 431, 476 (1999).

    ADS  Google Scholar 

  94. Y. Blumenfeld et al., Nucl. Instrum. Methods A 421, 471 (1999).

    ADS  Google Scholar 

  95. P. Baron et al., Nucl. Science Symp. Record. IEEE 1, 386 (2003).

    ADS  Google Scholar 

  96. K. Lau, J. Pyrlik, Nucl. Instrum. Methods A 366, 298 (1995).

    ADS  Google Scholar 

  97. F.D. Becchetti et al., Nucl. Instrum. Methods 138, 93 (1976).

    ADS  Google Scholar 

  98. F. Hubert et al., At. Data Nucl. Data Tab. 46, 1 (1990).

    ADS  Google Scholar 

  99. J.F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).

  100. J.C. Hardy et al., Phys. Rev. Lett. 25, 298 (1970).

    ADS  Google Scholar 

  101. D.G. Fleming et al., Nucl. Phys. A 162, 225 (1971).

    ADS  Google Scholar 

  102. J.L. Snelgrove, E. Kashy, Phys. Rev. 187, 1246 (1969).

    ADS  Google Scholar 

  103. GEANT4 Collaboration, Nucl. Instrum. Methods A 506, 250 (2003).

    ADS  Google Scholar 

  104. I.J. Thompson, Comput. Phys. Rep. 7, 167 (1998).

    ADS  Google Scholar 

  105. A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003).

    ADS  Google Scholar 

  106. F.D. Becchetti, G.W. Greenlees, Polarization Phenomena in Nuclear Reactions (The University of Wisconsin Press, Madison, Wisconsin, 1971).

  107. D.Y. Pang et al., Phys. Rev. C 79, 024615 (2009).

    ADS  Google Scholar 

  108. P.D. Kunz, Computer code DWUCK4, University of Corolado, unpublished.

  109. P.J.A. Buttle, L.J.B. Goldfarb, Proceedings of the Physical Society, Vol. 83 (1964) p. 701.

  110. M. Yasue et al., Nucl. Phys. A 509, 141 (1990).

    ADS  Google Scholar 

  111. R.L. Varner et al., Phys. Rep. 201, 57 (1991).

    ADS  Google Scholar 

  112. W.W. Daehnick, J.D. Childs, Z. Vrcelj, Phys. Rev. C 21, 2253 (1980).

    ADS  Google Scholar 

  113. P.D. Kunz, Computer code DWUCK5, University of Corolado, unpublished. .

  114. J.P. Schiffer et al., Phys. Rev. 164, 1274 (1967).

    ADS  Google Scholar 

  115. B.B. Back et al., Phys. Rev. Lett. 104, 132501 (2010).

    ADS  Google Scholar 

  116. P.A. Seidl et al., Phys. Rev. C 30, 1076 (1984).

    ADS  Google Scholar 

  117. H. Ward et al., Phys. Rev. Lett. 70, 3209 (1993).

    ADS  Google Scholar 

  118. G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983).

  119. J. Bommer et al., Nucl. Phys. A 172, 618 (1971).

    ADS  Google Scholar 

  120. W. Kretschmer et al., Nucl. Phys. A 333, 13 (1980).

    ADS  Google Scholar 

  121. T. Teranishi et al., Phys. Lett. B 650, 129 (2007).

    ADS  Google Scholar 

  122. R.J. Peterson et al., Nucl. Phys. A 425, 469 (1984).

    ADS  Google Scholar 

  123. S. Ota et al., Phys. Lett. B 666, 311 (2008).

    ADS  Google Scholar 

  124. H.T. Fortune, R. Sherr, Phys. Rev. C 74, 024301 (2006).

    ADS  Google Scholar 

  125. P. Descouvemont, D. Baye, Phys. Lett. B 505, 71 (2001).

    ADS  Google Scholar 

  126. Y. Kanada-En’yo, Phys. Rev. C 66, 011303(R) (2002).

    ADS  Google Scholar 

  127. Y. Kanada-En’yo et al., Prog. Theor. Phys. 120, 917 (2008).

    ADS  Google Scholar 

  128. M.F. Jager et al., Phys. Rev. C 86, 011304(R) (2012).

    ADS  Google Scholar 

  129. A. Matta, Doctoral thesis (Université de Paris-Sud, Orsay, 2012).

  130. J.A. Dueñas et al., Nucl. Instrum. Methods A 676, 70 (2012).

    ADS  Google Scholar 

  131. C.E. Demonchy et al., Nucl. Instrum. Methods A 583, 341 (2007).

    ADS  Google Scholar 

  132. D. Suzuki et al., Nucl. Instrum. Methods A 691, 39 (2012).

    ADS  Google Scholar 

  133. R. Raabe, ACTAR Collaboration, AIP Conf. Proc. 1165, 339 (2009).

    ADS  Google Scholar 

  134. S. Gales, Prog. Part. Nucl. Phys. 59, 22 (2007).

    ADS  Google Scholar 

  135. M. Lindroos et al., Nucl. Instrum. Methods B 266, 4687 (2008).

    ADS  Google Scholar 

  136. D. Leitner, Proceedings of SRF2011, Chicago, USA, 2011, paper THIOB03, p. 674, http://accelconf.web.cern.ch/accelconf/SRF2011.

  137. R. York, Proceedings of LINAC10, Tsukuba, Japan, 2010, paper MOP046, p. 160, http://accelconf.web.cern.ch/AccelConf/LINAC2010.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Suzuki.

Additional information

Communicated by N. Alamanos

Daisuke Suzuki is an experimental nuclear physicist. He received the doctoral degree from the University of Tokyo in 2009 and worked as a visiting research associate at the National Superconducting Cyclotron Laboratory, Michigan State University before joining the Institut de Physique Nucléaire d’Orsay in 2012. He has been working on light-ion spectroscopy of unstable nuclei and associated detector developments. He was awarded the GANIL PhD award 2011 for his thesis work presented in this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, D. Missing mass spectroscopy on oxygen isotopes beyond the proton-drip line: mirror symmetry of nuclear shell evolution. Eur. Phys. J. A 48, 130 (2012). https://doi.org/10.1140/epja/i2012-12130-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12130-6

Keywords

Navigation