Skip to main content
Log in

M1 strength functions from large-scale shell-model calculations and their effect on astrophysical neutron capture cross-sections

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

We have computed magnetic dipole strength distributions for iron isotopes within shell-model calculations based on model spaces with 40Ca and 48Ca cores, respectively. These distributions have been incorporated into statistical model calculations of neutron capture cross-sections. We find significant differences if the cross-sections are compared to those obtained with empirical parametrizations of the M1 strength distributions, the latter being commonly used in applications of the statistical model to astrophysically important capture reactions. As this is traditionally done, these studies are based on the hypothesis that the strength functions for all excited states are the same as for the ground state. Using neutron capture on 68Fe as an example we investigate the validity of this hypothesis and calculate the capture cross-section on the basis of individual strength distributions calculated within the shell model for the lowest 30 states in the compound nucleus 69Fe. Finally we explore which effect the scissors mode, a fundamental orbital M1 excitation observed in deformed nuclei at rather low excitation energies, might have on capture cross-sections for nuclei with low neutron thresholds, a situation which typically occurs for r-process nuclei. The appendix compares the spin- and parity-dependent level densities for 69Fe with those obtained with other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.M. Burbidge, G.R. Burbidge, W.A. Fowler, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

    Article  ADS  Google Scholar 

  2. G. Wallerstein et al., Rev. Mod. Phys. 69, 795 (1997).

    Article  Google Scholar 

  3. K. Langanke, M. Wiescher, Rep. Prog. Phys. 64, 1657 (2001).

    Article  ADS  Google Scholar 

  4. W. Hauser, H. Feshbach, Phys. Rev. 87, 366 (1952).

    Article  ADS  MATH  Google Scholar 

  5. J.A. Holmes, S.E. Woosley, W.A. Fowler, B.A. Zimmerman, At. Data Nucl. Data Tables 18, 305 (1976).

    Article  ADS  Google Scholar 

  6. J.J. Cowan, F.-K. Thielemann, J.W. Truran, Phys. Rep. 208, 267 (1991).

    Article  ADS  Google Scholar 

  7. T. Rauscher, F.-K. Thielemann, K.-L. Kratz, Phys. Rev. C 56, 1613 (1997).

    Article  ADS  Google Scholar 

  8. F. Käppeler, Prog. Part. Nucl. Phys. 43, 419 (1999).

    Article  ADS  Google Scholar 

  9. S. Goriely, E. Khan, Nucl. Phys. A 706, 217 (2002).

    Article  ADS  Google Scholar 

  10. S. Goriely, E. Khan, M. Samyn, Nucl. Phys. A 739, 331 (2004).

    Article  ADS  Google Scholar 

  11. E. Litvinova, P. Ring, V. Tselyaev, Phys. Rev. C 78, 014312 (2008).

    Article  ADS  Google Scholar 

  12. S. Goriely, Phys. Lett. B 436, 10 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Litvinova, P. Ring, V. Tselyaev, K. Langanke, Phys. Rev. C 79, 054312 (2009).

    Article  ADS  Google Scholar 

  14. C. Barbieri, E. Caurier, K. Langanke, G. Martinez-Pinedo, Phys. Rev. C 77, 024304 (2008).

    Article  ADS  Google Scholar 

  15. E. Litvinova et al., Nucl. Phys. A 823, 26 (2009).

    Article  ADS  Google Scholar 

  16. E. Caurier, K. Langanke, G. Martinez-Pinedo, F. Nowacki, Nucl. Phys. A 653, 439 (1999).

    Article  ADS  Google Scholar 

  17. E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 799, 42 (2005).

    Google Scholar 

  18. P. von Neumann-Cosel, A. Poves, J. Retamosa, A. Richter, Phys. Lett. B 443, 1 (1998).

    Article  ADS  Google Scholar 

  19. K. Langanke, G. Martinez-Pinedo, Nucl. Phys. A 673, 481 (2000).

    Article  ADS  Google Scholar 

  20. K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 93, 202501 (2004).

    Article  ADS  Google Scholar 

  21. D. Bohle et al., Phys. Lett. B 137, 27 (1964).

    Article  ADS  Google Scholar 

  22. K. Heyde, P. von Neumann-Cosel, A. Richter, Rev. Mod. Phys. 82, 2365 (2010).

    Article  ADS  Google Scholar 

  23. T. Rauscher, F.-K. Thielemann, At. Data Nucl. Data Tables 79, 79 (2000).

    Google Scholar 

  24. H.P. Loens et al., Phys. Lett. B 666, 395 (2008).

    Article  ADS  Google Scholar 

  25. S. Hilaire, S. Goriely, Nucl. Phys. A 779, 63 (2006).

    Article  ADS  Google Scholar 

  26. S. Goriely, S. Hilaire, A. Koning, Phys. Rev. C 78, 064307 (2008).

    Article  ADS  Google Scholar 

  27. A. Gilbert, A.G.W. Cameron, Can. J. Phys. 43, 1446 (1963).

    Article  ADS  Google Scholar 

  28. D. Mocelj et al., Phys. Rev. C 75, 045805 (2007).

    Article  ADS  Google Scholar 

  29. J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Springer-Verlag, 1952).

  30. J. Kopecky, M. Uhl, Report NEA/NSC/DOC(95) 1, 119.

  31. E.-W. Grewe et al., Phys. Rev. C 77, 064303 (2008).

    Article  ADS  Google Scholar 

  32. A. Poves, J. Sánchez-Solano, E. Caurier, F. Nowacki, Nucl. Phys. A 694, 157 (2001).

    Article  ADS  Google Scholar 

  33. O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).

    Article  ADS  Google Scholar 

  34. K. Langanke, J. Terasaki, F. Nowacki, D.J. Dean, W. Nazarewicz, Phys. Rev. C 67, 044314 (2003).

    Article  ADS  Google Scholar 

  35. J.M. Daugas et al., Phys. Rev. C 81, 034304 (2010).

    Article  ADS  Google Scholar 

  36. Q. Zhi et al., Nucl. Phys. A 859, 172 (2011).

    Article  ADS  Google Scholar 

  37. A.R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1960).

  38. P.J. Mohr, B.N. Taylor, D.B. Newell, Rev. Mod. Phys. 80, 633 (2008).

    Article  ADS  Google Scholar 

  39. K. Langanke et al., Phys. Rev. C 52, 718 (1995).

    Article  ADS  Google Scholar 

  40. G. Martinez-Pinedo et al., Phys. Rev. C 53, R2602 (1995).

    Article  ADS  Google Scholar 

  41. T. Rauscher, Phys. Rev. C 81, 045807 (2010).

    Article  ADS  Google Scholar 

  42. I. Dillmann, Proceedings of International Conference on Nuclear Data for Science and Technology, Vol. 1 (2008) p. 575, I. Dillmann, Ph.D. thesis, University of Basel (2006).

  43. R.W. Fearick et al., Nucl. Phys. A 727, 41 (2003).

    Article  ADS  Google Scholar 

  44. P. Möller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).

    Article  ADS  Google Scholar 

  45. A.V. Ignatyuk, G.N. Smirenkin, A.S. Tishin, Yad. Phys. 21, 485 (1975).

    Google Scholar 

  46. A.V. Ignatyuk, K.K. Istekov, G.N. Smirenkin, Sov. J. Nucl. Phys. 29, 450 (1979).

    Google Scholar 

  47. A.R. Junghans et al., Nucl. Phys. A 629, 635 (1998).

    Article  ADS  Google Scholar 

  48. Y. Alhassid, G.F. Bertsch, S. Liu, H. Nakada, Phys. Rev. Lett. 84, 4313 (2000).

    Article  ADS  Google Scholar 

  49. C.W. Johnson, S.E. Koonin, G.H. Lang, W.E. Ormand, Phys. Rev. Lett. 69, 3157 (1992).

    Article  ADS  Google Scholar 

  50. S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1997).

    Article  ADS  Google Scholar 

  51. W.E. Ormand, Phys. Rev. C 56, R1678 (1997).

    Article  ADS  Google Scholar 

  52. H. Nakada, Y. Alhassid, Phys. Rev. Lett. 79, 2939 (1997).

    Article  ADS  Google Scholar 

  53. K. Langanke, Phys. Lett. B 438, 235 (1998).

    Article  ADS  Google Scholar 

  54. Y. Alhassid, S. Liu, H. Nakada, Phys. Rev. Lett. 83, 4265 (1999).

    Article  ADS  Google Scholar 

  55. K. Langanke, Nucl. Phys. A 778, 233 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Martínez-Pinedo.

Additional information

Communicated by M. Hjorth-Jensen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loens, H.P., Langanke, K., Martínez-Pinedo, G. et al. M1 strength functions from large-scale shell-model calculations and their effect on astrophysical neutron capture cross-sections. Eur. Phys. J. A 48, 34 (2012). https://doi.org/10.1140/epja/i2012-12034-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12034-5

Keywords

Navigation