Skip to main content
Log in

Revisiting the decay scheme and half-life of 139Ba

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The decay of 139Ba to levels of 139La has been studied employing singles and \( \gamma\) -\( \gamma\) coincidence spectroscopy techniques, using four Compton suppressed Clover detectors. The \( \gamma\) -\( \gamma\) coincidence data obtained in the present work has been more conclusive as compared to the coincidence data obtained using NaI(Tl)-Ge(Li) detectors in the earlier investigations. The relative intensities of twenty-seven \( \gamma\) -ray transitions have been determined. The \( \gamma\) -ray transitions with energies 1044 and 1525keV, attributed to the decay of 139Ba in the previous works, have been found to be due to long-lived impurities. The 1691keV transition, previously assigned to the decay of 139Ba , is found to be mainly associated with an impurity with only a small fraction belonging to 139Ba decay. The half-life of 139Ba has been measured. The present work attempts to resolve some of the discrepancies in the previous investigations, which will be helpful in the precise determination of \( \beta\) -decay scheme of 139Ba.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Berzins, M.E. Bunker, J.W. Starner, Nucl. Phys. A 128, 294 (1969)

    Article  ADS  Google Scholar 

  2. R.J. Gehrke, Int. J. Appl. Radiat. Isot. 31, 37 (1980)

    Article  Google Scholar 

  3. T.W. Burrows, Nucl. Data Sheets 92, 623 (2001)

    Article  ADS  Google Scholar 

  4. John. C. Hill, M.L. Wiedenbeck, Nucl. Phys. A 119, 53 (1968)

    Article  ADS  Google Scholar 

  5. Robert E. Laird, Phys. Rev. C 17, 1498 (1978)

    Article  ADS  Google Scholar 

  6. Scott H. Faller, Craig A. Stone, John D. Robertson, Chien Chung, Namik K. Aras, William B. Walters, Phys. Rev. C 34, 654 (1986)

    Article  ADS  Google Scholar 

  7. B.H. Wildenthal, E. Newman, R.L. Auble, Phys. Rev. C 3, 1199 (1971)

    Article  ADS  Google Scholar 

  8. C.B. Zamboni, J.A.G. Medeiros, A.L. Lapolli, F.A. Genezini, S.P. Camargo, M.T.F. da Cruz, J.Y. Zevallos-Chavez, Appl. Radiat. Isot. 55, 477 (2001)

    Article  Google Scholar 

  9. A.Y. Dauenhauer, K.S. Krane, Phys. Rev. C 85, 064301 (2012)

    Article  ADS  Google Scholar 

  10. P.K. Joshi et al., Nucl. Instrum. Methods A 399, 51 (1997)

    Article  ADS  Google Scholar 

  11. G. Duchêne et al., Nucl. Instrum. Methods A 432, 90 (1999)

    Article  ADS  Google Scholar 

  12. S. Murlithar et al., Nucl. Instrum. Methods A 622, 281 (2010)

    Article  ADS  Google Scholar 

  13. http://www.tifr.res.in/~pell/lamps.html

  14. A. Astier et al., Phys. Rev. C 85, 064316 (2012)

    Article  ADS  Google Scholar 

  15. D.C. Radford, Nucl. Instrum. Methods A 361, 297 (1995)

    Article  ADS  Google Scholar 

  16. http://radware.phy.ornl.gov/

  17. ENSDF database at http://www.nndc.bnl.gov/

  18. N. Nica et al., Phys. Rev. C 77, 034306 (2008)

    Article  ADS  Google Scholar 

  19. G. Audi, M. Weng, private communication (2011)

  20. M.L. Pool, J.M. Cork, Phys. Rev. 51, 1010A (1937)

    Article  Google Scholar 

  21. L.R. Shepherd, J.M. Hill, Nature 162, 566 (1948)

    Article  ADS  Google Scholar 

  22. W.H. Kelly, G.B. Beard, W.B. Chaffee, J.M. Gonser, Nucl. Phys. 19, 79 (1960)

    Article  Google Scholar 

  23. C.R. Dillard, H. Finston, R.M. Adams, NNES 9, 1101 (1950)

    Google Scholar 

  24. J.P. Butler, B.J. Bowles, J. Inorg. Nucl. Chem. 6, 346 (1958)

    Article  Google Scholar 

  25. A.C. Pappas, MIT Technical Report 63 (1953)

  26. K. Fritze, T.J. Kennett, Phys. Rev. 127, 1262 (1962)

    Article  ADS  Google Scholar 

  27. A.P. Baerg, R.M. Bartholomew, Can. J. Chem. 35, 980 (1957)

    Article  Google Scholar 

  28. J.F. Emery, S.A. Reynolds, E.I. Wyatt, G.I. Gleason, Nucl. Sci. Eng. 48, 319 (1972)

    Google Scholar 

  29. R.G. Wille, R.W. Fink, Phys. Rev. 118, 242 (1960)

    Article  ADS  Google Scholar 

  30. J.W. Sunier, J. Berthier, Nucl. Phys. A 124, 673 (1969)

    Article  ADS  Google Scholar 

  31. B. Ehrenberg, S. Amiel, Phys. Rev. C 6, 618 (1972)

    Article  ADS  Google Scholar 

  32. M.S. Antony, J.B. Bueb, J. Radioanal. Nucl. Chem. 95, 219 (1985)

    Article  Google Scholar 

  33. A.A. Bzouzi, M.S. Antony, V.B. Ndocko Ndongue, J. Radioanal. Nucl. Chem. 135, 1 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Joshi.

Additional information

Communicated by A.A. Korsheninnikov

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danu, L.S., Joshi, P.K., Biswas, D.C. et al. Revisiting the decay scheme and half-life of 139Ba. Eur. Phys. J. A 48, 186 (2012). https://doi.org/10.1140/epja/i2012-12186-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2012-12186-2

Keywords

Navigation