Skip to main content
Log in

Spectroscopy of 40Ca and negative-parity bands

  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We have studied the reactions \(^{28}\textrm{Si} + {}^{24}\textrm{Mg} \rightarrow {}^{52}\textrm{Fe}\rightarrow {}^{40}\textrm{Ca}^* + 3\alpha\) as well as the binary channel \(^{52}\textrm{Fe}\rightarrow{}^{40}\textrm{Ca}^* + {}^{12}\textrm{C}^*\), in order to search for deformed states, which form rotational bands in 40Ca. We observe positive- and negative-parity bands. The negative-parity band is proposed to be a partner of an inversion doublet with the positive-parity states being based on 4p-4h configurations. The properties of the positive-parity states are discussed on the basis of the shell model and the parity doublet on the basis of a cluster model with intrinsic reflection asymmetric shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.J. Gerace, A.M. Green, Nucl. Phys. A 93, 110 (1967).

    Article  Google Scholar 

  2. W.J. Gerace, A.M. Green, Nucl. Phys. A 123, 241 (1969).

    Article  Google Scholar 

  3. S. Ohkubo, Prog. Theor. Phys. Suppl. 132, 1 (1998).

    Google Scholar 

  4. K. Ikeda, N. Tagikawa, H. Horiuchi, Prog. Theor. Phys. (Jpn.) Extra Vol. Suppl. 64 (1968).

  5. G. Reidemeister, S. Ohkubo, F. Michel., Phys. Rev. C 41, 63 (1990).

    Article  Google Scholar 

  6. H.T. Fortune, Phys. Rev. C 19, 756 (1979).

    Article  Google Scholar 

  7. T. Yamaya, Nucl. Phys. A 573, 154 (1994).

    Article  Google Scholar 

  8. T. Yamaya, Phys. Rev. C 53, 131 (1996).

    Google Scholar 

  9. E. Ideguchi, Phys. Rev. Lett. 87, 222501 (2001).

    Google Scholar 

  10. C.S. Svensson, Physics Division Annual Report, Argonne National Laboratory ANL-00/20, c63 (1999).

  11. D. Rudolph, Phys. Rev. C 65, 03430 (2000).

    Google Scholar 

  12. C.S. Svensson, Phys. Rev. C 63, 061301 (2001).

    Article  Google Scholar 

  13. J.C. Chiara, E. Ideguchi, M. Devlin, Phys. Rev. 67, 041303R (2003).

    Article  Google Scholar 

  14. Tz. Kokalova, Thesis, FU Berlin July 2003, to be published.

  15. D. Bazzacco, Proceedings of the International Conference on Nuclear Structure at High Angular Momentum, (Ottawa, 1992) Vol. 2, Report No. AECL 10613 (AECL Research, Ottawa, 1992) p. 376.

  16. S. Thummerer, J. Phys. G 27, 1405 (2001).

    Article  Google Scholar 

  17. H. Morgenstern, Z. Phys. A 313, 39 (1983).

    Google Scholar 

  18. K.S. Krane, R.M. Steffen, R.M. Wheeler, Nucl. Data Tables 11, 351 (1973).

    Google Scholar 

  19. P.M. Endt, Nucl. Phys. A 521, 1 (1990).

    Article  Google Scholar 

  20. C.R. Gruhn, Phys. Rev. C 6, 915 (1972).

    Article  Google Scholar 

  21. C.D. O’Leary, Phys. Rev. C 61, 064314 (2000).

    Article  Google Scholar 

  22. E. Farnea, Phys. Lett. B 551, 56 (2003).

    Article  Google Scholar 

  23. H. Horiuchi, K. Ikeda, Prog. Theor. Phys. 40, 277 (1968).

    Google Scholar 

  24. P.A. Butler, W. Nazarewicz, Rev. Mod. Phys. 68, 350 (1996).

    Article  Google Scholar 

  25. W.J. Gerace, A.M. Green, Nucl. Phys. A 113, 641 (1968).

    Article  Google Scholar 

  26. E.P. Lippincott, A.M. Bernstein, Phys. Rev. 163, 1170 (1967).

    Article  Google Scholar 

  27. Y. Kanada-En’yo, arXiv:nucl-th/0208078 v1 30Aug2002.

  28. S.W. Kikstra, Nucl. Phys. A 512, 425 (1990).

    Article  Google Scholar 

  29. R. Middleton, Phys. Lett. B 39, 339 (1972).

    Article  Google Scholar 

  30. J.J. Simpson, Phys. Rev. Lett. 35, 23 (1975).

    Article  MATH  Google Scholar 

  31. P. Braun-Munzinger, Phys. Rev. Lett. 29, 1261 (1972).

    Article  Google Scholar 

  32. T.M. Shneidman, Nucl. Phys. A 671, 119 (2000).

    Article  Google Scholar 

  33. S. Torilov, Thesis 2003, St. Petersbirg University.

  34. M. Lach, Eur. Phys. J. A 16, 309 (2003).

    Google Scholar 

  35. H. Schultheis, R. Schultheis, Phys. Rev. C 27, 1367 (1983).

    Article  Google Scholar 

  36. T.M. Shneidman, Phys. Rev. C 67, 014313 (2003).

    Article  Google Scholar 

  37. T. Sakuda, S. Ohkubo, Prog. Theor. Phys. Suppl. 132, 103 (1998).

    Google Scholar 

  38. S. Ohkubo, private communication.

  39. T. Inakura, Nucl. Phys. A 710, 261 (2002).

    Article  Google Scholar 

  40. R.V. Jolos, P. von Brentano, Phys. Rev. C 49, R2301 (1994).

  41. R.V. Jolos, private communication.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. von Oertzen.

Additional information

Communicated by D. Schwalm

Received: 2 May 2003, Revised: 23 September 2003, Published online: 20 January 2004

PACS:

21.10.-k Properties of nuclei; nuclear energy levels - 21.60.Gx Cluster models

Rights and permissions

Reprints and permissions

About this article

Cite this article

Torilov, S., Thummerer, S., Oertzen, W.v. et al. Spectroscopy of 40Ca and negative-parity bands. Eur. Phys. J. A 19, 307–317 (2004). https://doi.org/10.1140/epja/i2003-10126-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2003-10126-y

Keywords

Navigation