Skip to main content
Log in

Double-beta-decay experiments: Present status and prospects for the future

  • Nuclei
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The present status of experiments seeking double-beta decay is surveyed. The results of the most sensitive experiments are discussed. Particular attention is given to describing the NEMO-3 detector, which is intended for seeking the neutrinoless double-beta decay of various isotopes (100Mo, 82Se, etc.) with a sensitivity as high as T 1/2 ∼ 1025 yr, which corresponds to a sensitivity to the Majorana neutrino mass at a level of 0.1 to 0.3 eV. The first results obtained with the NEMO-3 detector are presented. A review of the existing projects of double-beta-decay experiments where it is planned to reach a sensitivity to the Majorana neutrino mass at a level of 0.01 to 0.1 eV is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. V. Klapdor-Kleingrothaus, J. Hellmig, and M. Hirsch, J. Phys. G 24, 483 (1998).

    Article  ADS  Google Scholar 

  2. A. Faessler and F. Simkovic, Prog. Part. Nucl. Phys. 46, 233 (2001).

    Article  ADS  Google Scholar 

  3. J. D. Vergados, Phys. Rep. 361, 1 (2002).

    Article  ADS  Google Scholar 

  4. H. Sobel et al., Nucl. Phys. B (Proc. Suppl.) 91, 127 (2001).

    Article  ADS  Google Scholar 

  5. B. T. Cleveland et al., Astrophys. J. 496, 505 (1998).

    Article  ADS  Google Scholar 

  6. S. Fukuda et al., Phys. Rev. Lett. 86, 5651 (2001); 86, 5656 (2001).

    ADS  Google Scholar 

  7. V. N. Gavrin et al., Nucl. Phys. B (Proc. Suppl.) 91, 36 (2001).

    Article  ADS  Google Scholar 

  8. M. Altman et al., Phys. Lett. B 490, 16 (2000).

    ADS  Google Scholar 

  9. Q. R. Ahmad et al., Phys. Rev. Lett. 89, 011301 (2002); 89, 011302 (2002).

  10. P. C. de Holanda and A. Yu. Smirnov, Phys. Rev. D 66, 113005 (2002).

    Google Scholar 

  11. J. N. Bahcall et al., hep-ph/0204314.

  12. M. Maltoni et al., hep-ph/0207227.

  13. K. Eguchi et al., hep-ex/0212021.

  14. A. Yu. Smirnov, Czech. J. Phys. 52, 439 (2002).

    Article  ADS  Google Scholar 

  15. S. Pascoli, S. T. Petcov, and W. Rodejohann, hep-ph/0209059.

  16. B. Kayser, hep-ph/0211134.

  17. A. S. Barabash, Pis'ma Zh. Éksp. Teor. Fiz. 68, 3 (1998) [JETP Lett. 68, 1 (1998)].

    Google Scholar 

  18. A. S. Barabash, Eur. Phys. J. A 8, 137 (2000).

    Article  ADS  Google Scholar 

  19. G. Gelmini and M. Roncadelli, Phys. Lett. B 99B, 1411 (1981).

    Google Scholar 

  20. R. N. Mohapatra and P. B. Pal, Massive Neutrinos in Physics and Astrophysics (World Sci., Singapore, 1991).

    Google Scholar 

  21. Z. G. Berezhiani, A. Yu. Smirnov, and J. W. F. Valle, Phys. Lett. B 291, 99 (1992).

    ADS  Google Scholar 

  22. R. N. Mohapatra and E. Takasugi, Phys. Lett. B 211, 192 (1988).

    ADS  Google Scholar 

  23. C. P. Burgess and J. M. Cline, Phys. Lett. B 298, 141 (1993); Phys. Rev. D 49, 5925 (1994).

    ADS  Google Scholar 

  24. P. Bamert, C. P. Burgess, and R. N. Mohapatra, Nucl. Phys. B 449, 25 (1995).

    Article  ADS  Google Scholar 

  25. C. D. Carone, Phys. Lett. B 308, 85 (1993).

    ADS  Google Scholar 

  26. R. N. Mohapatra, A. Perez-Lorenzana, and C. A. S. Pires, Phys. Lett. B 491, 143 (2000).

    ADS  Google Scholar 

  27. V. I. Tretyak and Yu. G. Zdesenko, At. Data Nucl. Data Tables 80, 83 (2002).

    Article  ADS  Google Scholar 

  28. E. L. Fireman, Phys. Rev. 74, 1238 (1948).

    Google Scholar 

  29. M. G. Inghram and J. H. Reynolds, Phys. Rev. 76, 1265 (1949); 78, 822 (1950).

    ADS  Google Scholar 

  30. T. Kirsten, W. Gentner, and O. A. Schaeffer, Z. Phys. 202, 273 (1967).

    ADS  Google Scholar 

  31. S. R. Elliott, A. A. Hahn, and M. K. Moe, Phys. Rev. Lett. 59, 2020 (1987).

    ADS  Google Scholar 

  32. A. S. Barabash et al., Phys. Lett. B 345, 408 (1995).

    ADS  Google Scholar 

  33. A. L. Turkevich, T. E. Economou, and G. A. Cowan, Phys. Rev. Lett. 67, 3211 (1991).

    Article  ADS  Google Scholar 

  34. A. Kawashima, K. Takahashi, and A. Masuda, Phys. Rev. C 47, 2452 (1993).

    Article  ADS  Google Scholar 

  35. M. E. Wieser and J. R. De Laeter, Phys. Rev. C 64, 024308 (2001).

    Google Scholar 

  36. A. S. Barabash, Czech. J. Phys. 52, 567 (2002).

    ADS  Google Scholar 

  37. A. A. Vasenko et al., Mod. Phys. Lett. A 5, 1299 (1990).

    ADS  Google Scholar 

  38. H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12, 147 (2001).

    Article  ADS  Google Scholar 

  39. H. V. Klapdor-Kleingrothaus et al., Mod. Phys. Lett. A 16, 2409 (2001).

    ADS  Google Scholar 

  40. C. E. Aalseth et al., Mod. Phys. Lett. A 17, 1475 (2002).

    ADS  Google Scholar 

  41. F. Feruglio, A. Strumia, and F. Vissani, Nucl. Phys. B 637, 345 (2002).

    Article  ADS  Google Scholar 

  42. Yu. G. Zdesenko, F. A. Danevich, and V. I. Tretyak, Phys. Lett. B 546, 206 (2002).

    ADS  Google Scholar 

  43. C. E. Aalseth et al., Phys. Rev. C 65, 092007 (2002).

  44. R. Luescher et al., Phys. Lett. B 434, 407 (1998).

    ADS  Google Scholar 

  45. C. Arnaboldi et al., hep-ex/0211071.

  46. F. A. Danevich et al., Phys. Rev. C 62, 045501 (2000).

  47. NEMO Collab.

  48. F. Simkovic et al., Phys. Rev. C 60, 055502 (1999).

  49. J. Suhonen, Phys. Lett. B 477, 99 (2000).

    ADS  Google Scholar 

  50. J. Suhonen, Phys. Rev. C 62, 042501 (2000).

    Google Scholar 

  51. S. Stoica and H. V. Klapdor-Kleingrothaus, Nucl. Phys. A 694, 269 (2001).

    ADS  Google Scholar 

  52. E. Caurier et al., Nucl. Phys. A 654, 973c (1999).

    ADS  Google Scholar 

  53. J. H. Hirsch, O. Castanos, and P. O. Hess, Nucl. Phys. A 582, 124 (1995).

    ADS  Google Scholar 

  54. J. Suhonen and O. Sivitarese, Phys. Rep. 300, 123 (1998).

    Article  ADS  Google Scholar 

  55. K. You et al., Phys. Lett. B 265, 53 (1991).

    ADS  Google Scholar 

  56. S. R. Elliot et al., Phys. Rev. C 46, 1535 (1992).

    ADS  Google Scholar 

  57. R. Arnold et al., Nucl. Phys. A 658, 299 (1999).

    Google Scholar 

  58. O. K. Manuel, J. Phys. G 17, 221 (1991).

    Article  ADS  Google Scholar 

  59. A. De Silva, M. K. Moe, M. A. Nelson, and M. A. Vient, Phys. Rev. C 56, 2451 (1997).

    ADS  Google Scholar 

  60. A. S. Barabash, Phys. Lett. B 216, 257 (1989).

    ADS  Google Scholar 

  61. R. Arnold et al., Nucl. Phys. A 636, 209 (1998).

    Google Scholar 

  62. M. Hirsch et al., Phys. Lett. B 372, 8 (1996).

    ADS  Google Scholar 

  63. M. Gunther et al., Phys. Rev. D 55, 54 (1997).

    MathSciNet  ADS  Google Scholar 

  64. R. Arnold et al., Nucl. Phys. A 678, 341 (2000).

    ADS  Google Scholar 

  65. J. Tanaka and H. Ejiri, Phys. Rev. D 48, 5412 (1993).

    Article  ADS  Google Scholar 

  66. O. Cremonesi, hep-ex/0210007.

  67. B. Maier, Nucl. Phys. B (Proc. Suppl.) 35, 358 (1994).

    Article  ADS  Google Scholar 

  68. S. K. Dhiman and P. K. Raina, Phys. Rev. C 50, R2660 (1994).

  69. O. Civitarese and J. Suhonen, Nucl. Phys. A 575, 251 (1994).

    ADS  Google Scholar 

  70. J. Toivanen and J. Suhonen, Phys. Rev. C 55, 2314 (1997).

    Article  ADS  Google Scholar 

  71. C. E. Aalseth et al., hep-ex/0201021.

  72. C. Arnaboldi et al., hep-ex/0212053.

  73. H. V. Klapdor-Kleingrothaus et al., hep-ph/0103074.

  74. A. Piepke, Nucl. Phys. B (Proc. Suppl.) 91, 99 (2001).

    Article  ADS  Google Scholar 

  75. R. S. Raghavan, Phys. Rev. Lett. 72, 1411 (1994).

    Article  ADS  Google Scholar 

  76. B. Caccianiga and M. G. Giammarchi, Astropart. Phys. 14, 15 (2000).

    Article  ADS  Google Scholar 

  77. A. Bakalyarov et al., Pis'ma Zh. Éksp. Teor. Fiz. 76, 643 (2002) [JETP Lett. 76, 545 (2002)].

    Google Scholar 

  78. A. S. Barabash et al., Z. Phys. A 352, 231 (1995).

    Article  ADS  Google Scholar 

  79. A. A. Klimenko et al., Czech. J. Phys. 52, 589 (2002).

    Article  ADS  Google Scholar 

  80. A. Morales et al., Nuovo Cimento A 100, 525 (1988).

    ADS  Google Scholar 

  81. J. Suhonen et al., Z. Phys. A 358, 297 (1997).

    Article  ADS  Google Scholar 

  82. A. S. Barabash et al., J. Phys. G 22, 487 (1996).

    Article  ADS  Google Scholar 

  83. H. Ejiri et al., Nucl. Phys. A 611, 85 (1996).

    ADS  Google Scholar 

  84. A. Piepke et al., Nucl. Phys. A 577, 121 (1994).

    Google Scholar 

  85. A. S. Barabash, A. V. Kopylov, and V. I. Cherehovsky, Phys. Lett. B 249, 186 (1990).

    ADS  Google Scholar 

  86. E. Bellotti et al., Europhys. Lett. 3, 889 (1987).

    ADS  Google Scholar 

  87. A. S. Barabash et al., Eur. Phys. J. A 11, 143 (2001).

    Article  ADS  Google Scholar 

  88. E. Bellotti et al., J. Phys. G 17, S231 (1991).

    Article  ADS  Google Scholar 

  89. C. Arpesella et al., Nucl. Phys. B (Proc. Suppl.) 70, 249 (1999).

    Article  ADS  Google Scholar 

  90. C. Arpesella et al., Nucl. Phys. B (Proc. Suppl.) 48, 247 (1996).

    ADS  Google Scholar 

  91. E. Bellotti et al., Lett. Nuovo Cimento 33, 273 (1982).

    Article  Google Scholar 

  92. M. Doi and T. Kotani, Prog. Theor. Phys. 87, 1207 (1992).

    Article  ADS  Google Scholar 

  93. J. Suhonen, Phys. Rev. C 48, 574 (1993).

    Article  ADS  Google Scholar 

  94. M. Hirsch et al., Z. Phys. A 347, 151 (1994).

    Article  ADS  Google Scholar 

  95. A. S. Barabash, Pis'ma Zh. Éksp. Teor. Fiz. 59, 644 (1994) [JETP Lett. 59, 677 (1994)].

    Google Scholar 

  96. A. S. Barabash and R. R. Saakyan, Yad. Fiz. 59, 197 (1996) [Phys. At. Nucl. 59, 179 (1996)].

    Google Scholar 

  97. E. B. Norman and M. A. De Faccio, Phys. Lett. B 148B, 31 (1984).

    ADS  Google Scholar 

  98. A. P. Meshik et al., Phys. Rev. C 64, 035205 (2001).

  99. C. Saenz et al., Phys. Rev. C 50, 1170 (1994).

    ADS  Google Scholar 

  100. S. I. Vasil'ev et al., Pis'ma Zh. Éksp. Teor. Fiz. 57, 614 (1993) [JETP Lett. 57, 320 (1993)].

    Google Scholar 

  101. P. Belli et al., Astropart. Phys. 10, 115 (1999).

    Article  ADS  Google Scholar 

  102. A. S. Barabash et al., Z. Phys. A 357, 351 (1997).

    Article  ADS  Google Scholar 

  103. H. Ejiri et al., Phys. Rev. C 63, 065501 (2001).

  104. H. Ejiri et al., Phys. Lett. B 531, 190 (2002).

    ADS  Google Scholar 

  105. C. Brofferio et al., Czech. J. Phys. 52, 531 (2002).

    Article  ADS  Google Scholar 

  106. V. A. Artemiev et al., Yad. Fiz. 63, 1312 (2000) [Phys. At. Nucl. 63, 1238 (2000)].

    Google Scholar 

  107. NEMO-3 Proposal, Preprint No. 94-29, LAL (Orsay, 1994).

  108. NEMO Collab., Preprint No. 02-30, LAL (Orsay, 2002).

  109. R. Arnold et al., Nucl. Instrum. Methods Phys. Res. A 354, 338 (1995).

    Article  ADS  Google Scholar 

  110. A. S. Barabash, Czech. J. Phys. 52, 575 (2002).

    ADS  Google Scholar 

  111. M. Danilov et al., Phys. Lett. B 480, 12 (2000).

    ADS  Google Scholar 

  112. M. Moe, Phys. Rev. C 44, R931 (1991).

    Article  ADS  Google Scholar 

  113. H. Ejiri, Phys. Rev. Lett. 85, 2917 (2000).

    Article  ADS  Google Scholar 

  114. G. Bellini et al., Phys. Lett. B 493, 216 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 67, No. 3, 2004, pp. 458–472.

Original Russian Text Copyright © 2004 by Barabash.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barabash, A.S. Double-beta-decay experiments: Present status and prospects for the future. Phys. Atom. Nuclei 67, 438–452 (2004). https://doi.org/10.1134/1.1690048

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1690048

Keywords

Navigation