Skip to main content
Log in

Microscopic description of odd- and even-mass Er isotopes

  • Published:
Acta Physica Hungarica A) Heavy Ion Physics

Abstract

The pseudo-SU(3) shell model is used to describe rotational bands and B(E2) electromagnetic transition strengths in the even- and odd-mass rare earth isotopes 164,165,166,167,168Er. The building blocks of the model are the pseudo-SU(3) proton and neutron states with pseudo-spin zero and 1/2, which describe even and odd numbers of nucleons, respectively. The many-particle states are built as linear combinations of pseudo-SU(3) coupled states with well-defined particle number and total angular momentum. The Hamiltonian includes spherical Nilsson single-particle energies, quadrupole—quadrupole and pairing interactions, as well as rotor terms that are diagonal in the SU(3) basis. The use of realistic single-particle energies has a fundamental importance in the appropriate description of odd-mass nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Kotlinski et al., Nucl. Phys. A517 (1990) 365.

    Article  Google Scholar 

  2. F. Brandolini et al., Phys. Rev. C45 (1992) 1549; F. Brandolini et al., Nucl. Phys. A600 (1996) 272; I. Alfter, E. Bodenstedt, W. Knichel, J. Schuth and H. Grawe, Hyperfine Interactions 110 (1997) 313; T. Hartlein, M. Heinebrodt, D. Schwalm and C. Fahlander, Eur. Phys. J. A2 (1998) 253.

    ADS  Google Scholar 

  3. M. Oshima et al., Phys. Rev. C52 (1995) 3492 [Erratum Phys. Rev. C55 (1997) 1604]; M. Oshima et al., Nucl. Phys. A557 (1993) 635c.

    ADS  Google Scholar 

  4. G. Gervais et al., Nucl. Phys. A624 (1997) 257.

    Article  Google Scholar 

  5. E. Melby, M. Guttormsen, J. Rekstad, A. Schiller, S. Siem and A. Voinov, Phys. Rev. C63 (2001) 044309.

    ADS  Google Scholar 

  6. J.J. Carroll et al., Phys. Rev. C43 (1991) 1238; H. Maser et al., Phys. Rev. C53 (1996) 2749; C. Schlegel, P. von Neumann-Cosel, A. Richter and P. Van Isacker, Phys. Lett. 375B (1996) 21.

    ADS  Google Scholar 

  7. J.N. Wilson, Phys. Rev. C56 (1997) 2502.

    ADS  Google Scholar 

  8. A. Bracco et al., Nucl. Phys. A557(1993) 237c; F. Camera et al., Nucl. Phys. A572 (1994) 401; R.A. Bark et al., Z. Phys. A359 (1997) 5.

    Article  ADS  Google Scholar 

  9. V. Nanal et al., Nucl. Phys. A649 (1999) 153c.

    Article  ADS  Google Scholar 

  10. K. Knopf and W. Waschkowski, Z. Phys. A357 (1997) 297.

    Article  Google Scholar 

  11. K.T. Hecht and A. Adler, Nucl. Phys. A137 (1969) 129; A. Arima, M. Harvey and K. Shimizu, Phys. Lett. B30 (1969) 517; R.D. Ratna Raju, J.P. Draayer and K.T. Hecht, Nucl Phys. A202 (1973) 433.

    Article  Google Scholar 

  12. J.P. Draayer, K.J. Weeks and K.T. Hecht, Nucl. Phys. A381 (1982) 1; J.P. Draayer and K.J. Weeks, Ann. of Phys. 156 (1984) 41; O. Castaños, J.P. Draayer and Y. Leschber, Ann. of Phys. 180 (1987) 290; O. Castaños, J.P. Draayer and Y. Leschber, Z. Phys. 329 (1988) 33.

    Article  ADS  Google Scholar 

  13. C. Bahri and J.P. Draayer, Comput. Phys. Commun. 83 (1994) 59.

    Article  MATH  ADS  Google Scholar 

  14. T. Beuschel, J.G. Hirsch and J.P. Draayer, Phys. Rev. C61 (2000) 54307.

    ADS  Google Scholar 

  15. G. Popa, J.G. Hirsch and J.P. Draayer, Phys. Rev. C62 (2000) 064313.

    Google Scholar 

  16. J.P. Draayer, G. Popa and J.G. Hirsch, Acta Phys. Pol. B32 (2001) 2697.

    ADS  Google Scholar 

  17. C. Vargas, J.G. Hirsch, T. Beuschel, J.P. Draayer, Phys. Rev. C61 (2000) 31301.

    ADS  Google Scholar 

  18. J.G. Hirsch, C.E. Vargas and J.P. Draayer, Rev. Mex. Fis. 46 Supl. 1 (2000) 54.

    Google Scholar 

  19. C.E. Vargas, J.G. Hirsch and J.P. Draayer, Nucl. Phys. A673 (2000) 219.

    Article  Google Scholar 

  20. C. Vargas, J.G. Hirsch and J.P. Draayer, Phys. Rev. C64 (2001) 034306.

    ADS  Google Scholar 

  21. P. Möller, J. Nix, W.D. Myers and N.J. Swiatecki, At. Data Nucl. Data Tables 59 (1995) 185.

    Article  ADS  Google Scholar 

  22. C. Vargas, J.G. Hirsch, P.O. Hess and J.P. Draayer, Phys. Rev. C58 (1998) 1488.

    ADS  Google Scholar 

  23. H.A. Naqvi and J.P. Draayer, Nucl. Phys. A516 (1990) 351; H.A. Naqvi and J.P. Draayer, Nucl. Phys.. A536 (1992) 297.

    Article  Google Scholar 

  24. Y. Leschber, Hadronic Journal Supplement 3 (1987) 1.

    MathSciNet  Google Scholar 

  25. P. Ring and P. Schuck. The Nuclear Many-Body Problem, Springer, Berlin, 1979.

    Google Scholar 

  26. M. Dufour and A.P. Zuker, Phys. Rev. C54 (1996) 1641.

    ADS  Google Scholar 

  27. National Nuclear Data Center, http://bnlnd2.dne.bnl.gov

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge G. Hirsch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, J.G., Popa, G., Vargas, C.E. et al. Microscopic description of odd- and even-mass Er isotopes. Acta Physica Hungarica A 16, 291–301 (2002). https://doi.org/10.1556/APH.16.2002.1-4.32

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1556/APH.16.2002.1-4.32

Keywords

PACS:

Navigation