Skip to main content
Log in

Neutrino-12C reactions and the LSND and KARMEN experiments on neutrino oscillations

  • Proceedings of the International Conference “Nuclear Structure and Related Topics” Bogoliubov Laboratory of Theoretical Physics Joint Institute for Nuclear Research Dubna, Russia June 6–10, 2000
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

We present new theoretical results of the flux-averaged 12C(ν e , e )12N and 12C(ν μ , μ )12N cross sections with ν μ (ν e ) coming from the decay-in-flight (decay-at-rest) of π +(μ +). These cross sections are relevant for the interpretation of the recent experiments on neutrino oscillation performed by the LSND and KARMEN collaborations. The microscopic approaches used are charge-exchange random phase approximation (RPA), charge-exchange RPA among quasiparticles (QRPA), and the Shell Model. We show that the exclusive cross sections are in nice agreement with the experimental values for both reactions when a large-scale shell-model calculation is performed. Concerning the inclusive cross section for ν μ coming from the decay-in-flight of π +, the calculated value keeps overestimating the experimental one by 20–30%, while the inclusive cross section due to ν e coming from the decay-at-rest of μ + is in agreement within experimental error bars with the measured values. The shell-model prediction for the decay-in-flight neutrino cross section is reduced compared to the RPA one because of the different kind of correlations in the calculation of the spin modes (in particular, the quenching of the 1+) and partially due to the shell-model configuration basis, which is not large enough, as we show using arguments based on sum rules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Athanassopoulos (LSND Collab.), Phys. Rev. Lett. 81, 1774 (1998); Phys. Rev. C 58, 2489 (1998).

    Article  ADS  Google Scholar 

  2. K. Eitel, in Proceedings of the 32nd Rencontres de Moriond, Electroweak Interactions and Unified Theories, Les Arcs, France, 1997.

  3. C. Athanassopoulos (LSND Collab.), Phys. Rev. Lett. 77, 3082 (1996); 75, 2650 (1995).

    Article  ADS  Google Scholar 

  4. K. Eitel and B. Zeitnitz (KARMEN Collab.), Nucl. Phys. B (Proc. Suppl.) 77, 212 (1999).

    Article  ADS  Google Scholar 

  5. B. Armbruster et al., Phys. Rev. C 57, 3414 (1998).

    Article  ADS  Google Scholar 

  6. S. Cohen and D. Kurath, Nucl. Phys. 73, 1 (1965).

    Google Scholar 

  7. C. Volpe, N. Auerbach, G. Colò, T. Suzuki, and N. Van Giai, Phys. Rev. C 62, 015501 (2000).

    Google Scholar 

  8. N. Auerbach, N. Van Giai, and O. K. Vorov, Phys. Rev. C 56, R2368 (1997).

  9. E. Kolbe, K. Langanke, and P. Vogel, Nucl. Phys. A 652, 91 (1999).

    ADS  Google Scholar 

  10. A. C. Hayes and I. S. Towner, Phys. Rev. C 61, 044603 (2000).

    Google Scholar 

  11. T. Kuramoto, M. Fukugita, Y. Kohyama, and K. Kubodera, Nucl. Phys. A 512, 711 (1990).

    ADS  Google Scholar 

  12. D. H. Wilkinson and B. E. F. Macefield, Nucl. Phys. A 232, 58 (1974).

    ADS  Google Scholar 

  13. J. Engel, Phys. Rev. C 57, 2004 (1998).

    Article  ADS  Google Scholar 

  14. N. Van Giai and H. Sagawa, Phys. Lett. B 106B, 379 (1981).

    ADS  Google Scholar 

  15. M. Beiner, H. Flocard, N. Van Giai, and Ph. Quentin, Nucl. Phys. A 238, 29 (1975).

    ADS  Google Scholar 

  16. K. Grotz and H. V. Klapdor, The Weak Interaction in Nuclear-, Particle-and Astrophysics (Adam Hilger, Bristol, 1990).

    Google Scholar 

  17. D. H. Gloeckner and R. D. Lawson, Phys. Lett. B 53B, 313 (1974).

    ADS  Google Scholar 

  18. E. K. Warburton and B. A. Brown, Phys. Rev. C 46, 923 (1992).

    Article  ADS  Google Scholar 

  19. B. A. Brown, A. Etchegoyen, and W. D. M. Rae, MSU Cyclotron Laboratory Report No. 524 (1986) (OXBASH — The Oxford, Buenos-Aires, Michigan State, Shell Model Program).

  20. L. J. Tassie and F. C. Barker, Phys. Rev. 111, 940 (1958).

    Article  ADS  Google Scholar 

  21. C. Athanassopoulos (LSND Collab.), Phys. Rev. C 56, 2806 (1997); M. Albert et al., Phys. Rev. C 51, R1065 (1995).

    Article  ADS  Google Scholar 

  22. D. A. Krakauer et al., Phys. Rev. C 45, 2450 (1992); R. C. Allen et al., Phys. Rev. Lett. 64, 1871 (1990).

    Article  ADS  Google Scholar 

  23. C. Athanassopoulos (LSND Collab.), Phys. Rev. C 55, 2078 (1997).

    Article  ADS  Google Scholar 

  24. B. E. Bodmann (KARMEN Collab.), Phys. Lett. B 332, 251 (1994); J. Kleinfeller et al., in Neutrino 96, Ed. by K. Enquist, H. Huitu, and J. Maalampi (World Sci., Singapore, 1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 64, No. 7, 2001, pp. 1242–1245.

Original English Text Copyright © 2001 by Volpe, Auerbach, Colò, Suzuki, Van Giai.

This article was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Volpe, C., Auerbach, N., Coló, G. et al. Neutrino-12C reactions and the LSND and KARMEN experiments on neutrino oscillations. Phys. Atom. Nuclei 64, 1165–1168 (2001). https://doi.org/10.1134/1.1389536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.1389536

Keywords

Navigation