Skip to main content
Log in

Double-beta decay in gauge theories

  • New Physics, Nuclear and Nucleon Structure in Rare Processes
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Neutrinoless double-beta decay is a very important process both from the particle and nuclear physics point of view. From the elementary particle point of view, it pops up in almost every model, giving rise among others to the following mechanisms: (a) the traditional contributions like the light neutrino mass mechanism as well as the j L j R leptonic interference (λ and η terms), (b) the exotic R-parity-violating supersymmetric (SUSY) contributions. Thus, its observation will severely constrain the existing models and will signal that the neutrinos are massive Majorana particles. From the nuclear physics point of view, it is challenging, because (1) the nuclei, which can undergo double-beta decay, have complicated nuclear structure; (2) the energetically allowed transitions are suppressed (exhaust a small part of all the strength); (3) since in some mechanisms the intermediate particles are very heavy one must cope with the short distance behavior of the transition operators (thus novel effects, like the double-beta decay of pions in flight between nucleons, have to be considered; in SUSY models, this mechanism is more important than the standard two-nucleon mechanism; and (4) the intermediate momenta involved are quite high (about 100 MeV/c). Thus one has to take into account possible momentum-dependent terms of the nucleon current, like modification of the axial current due to PCAC, weak magnetism terms, etc. We find that, for the mass mechanism, such modifications of the nucleon current for light neutrinos reduce the nuclear matrix elements by about 25%, almost regardless of the nuclear model. In the case of heavy neutrino, the effect is much larger and model-dependent. Taking the above effects into account, the needed nuclear matrix elements have been obtained for all the experimentally interesting nuclei A=76, 82, 96, 100, 116, 128, 130, 136, and 150. Then, using the best presently available experimental limits on the half-life of the 0νββ decay, we have extracted new limits on the various lepton-violating parameters. In particular, we find 〈m ν〉 < 0.3 eV/c 2, and, for reasonable choices of the parameters of SUSY models in the allowed SUSY parameter space, we get a stringent limit on the R-parity-violating parameter λ′111<4.0×10−4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Furry, Phys. Rev. 56, 1184 (1939).

    Article  ADS  MATH  Google Scholar 

  2. H. Primakoff, Phys. Rev. 85, 888 (1952); H. Primakoff and S. P. Rosen, Phys. Rev. 184, 1925 (1969); Proc. R. Soc. London 78, 464 (1961).

    Article  ADS  Google Scholar 

  3. M. Doi, T. Kotani, N. Nishiura, et al., Phys. Lett. B 103, 219 (1981); erratum: 113, 513 (1982).

    ADS  Google Scholar 

  4. W. C. Haxton and G. S. Stephenson, Prog. Part. Nucl. Phys. 12, 409 (1984).

    Article  ADS  Google Scholar 

  5. M. Doi, T. Kotani, and E. Takasugi, Prog. Theor. Phys. Suppl. 83, 1 (1985).

    Google Scholar 

  6. J. D. Vergados, Phys. Rep. 133, 1 (1986).

    Article  ADS  Google Scholar 

  7. T. Tomoda et al., Rep. Prog. Phys. 54, 53 (1991).

    Article  ADS  Google Scholar 

  8. J. Suhonen and O. Civitarese, Phys. Rep. 300, 123 (1998).

    Article  ADS  Google Scholar 

  9. A. Faessler and F. Šimkovic, J. Phys. G 24, 2139 (1998).

    ADS  Google Scholar 

  10. J. Schechter and J. W. F. Valle, Phys. Rev. D 25, 2951 (1982).

    ADS  Google Scholar 

  11. R. N. Mohapatra, hep-ph/9808284.

  12. G. Pantis, F. Šimkovic, J. D. Vergados, and A. Faessler, Phys. Rev. C 53, 695 (1996).

    Article  ADS  Google Scholar 

  13. R. N. Mohapatra, Phys. Rev. D 34, 3457 (1986).

    ADS  Google Scholar 

  14. J. D. Vergados, Phys. Lett. B 184, 55 (1987).

    ADS  Google Scholar 

  15. M. Hirsch, H. V. Klapdor-Kleingrothaus, and S. G. Kovalenko, Phys. Rev. Lett. 75, 17 (1995); Phys. Rev. D 53, 1329 (1996).

    Article  ADS  Google Scholar 

  16. A. Wodecki, W. Kamiński, and S. Pagerka, Phys. Lett. B 413, 342 (1997).

    ADS  Google Scholar 

  17. A. Faessler, S. Kovalenko, F. Šimkovic, and J. Schwieger, Phys. Rev. Lett. 78, 183 (1997); Yad. Fiz. 61, 1329 (1998) [Phys. At. Nucl. 61, 1229 (1998)].

    Article  ADS  Google Scholar 

  18. A. Faessler, S. Kovalenko, and F. Šimkovic, Phys. Rev. D 58, 115004 (1998).

    Google Scholar 

  19. A. Faessler, S. Kovalenko, and F. Šimkovic, Phys. Rev. D 58, 055004 (1998).

    Google Scholar 

  20. J. D. Vergados, Phys. Rev. C 24, 640 (1981).

    Article  ADS  Google Scholar 

  21. J. D. Vergados, Phys. Rev. D 25, 914 (1982).

    Article  ADS  Google Scholar 

  22. J. D. Vergados, Nucl. Phys. B 250, 618 (1985).

    Article  ADS  Google Scholar 

  23. T. Tomoda, F. Faessler, K. W. Schmidt, and F. Grümmer, Phys. Lett. B 157, 4 (1985).

    ADS  Google Scholar 

  24. F. Šimkovic, G. Pantis, J. D. Vergados, and A. Faessler, Phys. Rev. C (in press).

  25. F. Šimkovic, G. V. Efimov, M. A. Ivanov, and V. E. Lyubovitskij, Z. Phys. A 341, 193 (1992).

    Google Scholar 

  26. J. D. Vergados, Nucl. Phys. A 506, 842 (1990).

    Google Scholar 

  27. G. Pantis and J. D. Vergados, Phys. Lett. B 242, 1 (1990).

    ADS  Google Scholar 

  28. A. Faessler, W. A. Kamiński, G. Pantis, and J. D. Vergados, Phys. Rev. C 43, R21 (1991).

    Article  ADS  Google Scholar 

  29. J. Suhonen, S. B. Khadkikar, and A. Faessler, Phys. Lett. B 237, 8 (1990); Nucl. Phys. A 529, 727 (1991).

    ADS  Google Scholar 

  30. J. D. Vergados, Phys. Rev. C 13, 865 (1976).

    Article  ADS  Google Scholar 

  31. W. C. Haxton, G. S. Stephenson, and D. Strottman, Phys. Rev. D 25, 2360 (1982).

    Article  ADS  Google Scholar 

  32. L. D. Skouras and J. D. Vergados, Phys. Rev. C 28, 2122 (1983).

    Article  ADS  Google Scholar 

  33. L. Zhao, B. A. Brown, and W. A. Richter, Phys. Rev. C 42, 1120 (1990).

    Article  ADS  Google Scholar 

  34. E. Caurier, A. Poves, and A. P. Zucker, Phys. Lett. B 252, 13 (1990).

    ADS  Google Scholar 

  35. J. Sinatkas, L. D. Skouras, D. Strottman, and J. D. Vergados, J. Phys. G 18, 1377 (1992).

    ADS  Google Scholar 

  36. L. Zhao and B. A. Brown, Phys. Rev. C 47, 2641 (1993).

    Article  ADS  Google Scholar 

  37. J. Retamosa, E. Caurier, and F. Novacki, Phys. Rev. C 51, 371 (1995).

    Article  ADS  Google Scholar 

  38. P. B. Radha et al., Phys. Rev. Lett. 76, 2642 (1996).

    Article  ADS  Google Scholar 

  39. E. Caurier, F. Novacki, A. Poves, and J. Retamosa, Phys. Rev. Lett. 77, 1954 (1996).

    Article  ADS  Google Scholar 

  40. H. Nakada, T. Sebe, and K. Muto, Nucl. Phys. A 607, 235 (1996).

    ADS  Google Scholar 

  41. J. Suhonen, P. C. Divari, L. D. Skouras, and I. D. Johnstone, Phys. Rev. D 55, 714 (1997).

    ADS  Google Scholar 

  42. S. E. Koonin, D. J. Dean, and K. Langacke, Phys. Rep. 278, 1 (1997).

    Article  ADS  Google Scholar 

  43. P. Vogel and M. R. Zirnbauer, Phys. Rev. Lett. 57, 3148 (1986); J. Engel, P. Vogel, and M. R. Zirnbauer, Phys. Rev. C 37, 731 (1988).

    Article  ADS  Google Scholar 

  44. O. Civitarese, A. Faessler, and N. Tomoda, Phys. Lett. B 194, 11 (1987).

    ADS  Google Scholar 

  45. K. Muto, E. Bender, and H. V. Klapdor, Z. Phys. A 334, 177 (1989); K. Muto and H. V. Klapdor, Phys. Lett. B 201, 420 (1988).

    Google Scholar 

  46. J. Engel, P. Vogel, X. D. Ji, and S. Pittel, Phys. Lett. B 225, 5 (1989).

    ADS  Google Scholar 

  47. A. A. Raduta, A. Faessler, S. Stoica, and W. A. Kamiński, Phys. Lett. B 254, 7 (1991).

    ADS  Google Scholar 

  48. A. Griffiths and P. Vogel, Phys. Rev. C 46, 181 (1992).

    ADS  Google Scholar 

  49. J. Suhonen and O. Civitarese, Phys. Lett. B 308, 212 (1993).

    ADS  Google Scholar 

  50. O. Civitarese and J. Suhonen, Nucl. Phys. A 575, 1111 (1994).

    Google Scholar 

  51. F. Šimkovic et al., Phys. Lett. B 393, 267 (1997); F. Šimkovic, J. Schwieger, G. Pantis, and A. Faessler, Found. Phys. 27, 1275 (1997).

    ADS  Google Scholar 

  52. F. Šimkovic, G. Pantis, and A. Faessler, Yad. Fiz. 61, 1318 (1998) [Phys. At. Nucl. 61, 1218 (1998)]; Prog. Part. Nucl. Phys. 40, 285 (1998).

    Google Scholar 

  53. M. K. Cheoun et al., Nucl. Phys. A 561, 74 (1993).

    ADS  Google Scholar 

  54. J. Toivanen and J. Suhonen, Phys. Rev. Lett. 75, 410 (1995).

    Article  ADS  Google Scholar 

  55. J. Schwieger, F. Šimkovic, and A. Faessler, Nucl. Phys. A 600, 179 (1996).

    ADS  Google Scholar 

  56. J. D. Vergados, J. Phys. G 22, 253 (1996).

    Article  ADS  Google Scholar 

  57. T. Ericson and W. Weise, Pions and Nuclei (Clarendon Press, Oxford, 1988).

    Google Scholar 

  58. O. Dumbrajs et al., Nucl. Phys. B 216, 277 (1983).

    Article  ADS  Google Scholar 

  59. I. S. Towner and J. S. Hardy, in Symmetries and Fundamental Interactions in Nuclei, Ed. by W. C. Haxton and E. M. Henley (World Sci., Singapore, 1995), p. 183; nucl-th/9504015.

    Google Scholar 

  60. Heidelberg-Moscow Collab. (L. Baudis et al.), Phys. Lett. B 407, 219 (1997).

    Google Scholar 

  61. S. R. Elliot et al., Phys. Rev. C 46, 1535 (1992).

    ADS  Google Scholar 

  62. A. Kawashima, K. Takahashi, and A. Masuda, Phys. Rev. C 47, 2452 (1993).

    Article  ADS  Google Scholar 

  63. H. Ejiri et al., Nucl. Phys. A 611, 85 (1996).

    ADS  Google Scholar 

  64. F. A. Danevich et al., Phys. Lett. B 344, 72 (1995).

    ADS  Google Scholar 

  65. T. Bernatovicz et al., Phys. Rev. Lett. 69, 2341 (1992); Phys. Rev. C 47, 806 (1993).

    ADS  Google Scholar 

  66. A. Alessandrello et al., Nucl. Phys. B (Proc. Suppl.) 35, 366 (1994).

    ADS  Google Scholar 

  67. J. Busto et al., Nucl. Phys. B (Proc. Suppl.) 48, 251 (1996).

    Article  ADS  Google Scholar 

  68. A. De Silva, M. K. Moe, M. A. Nelson, and M. A. Vient, Phys. Rev. C 56, 2451 (1997).

    ADS  Google Scholar 

  69. M. Günter et al., Phys. Rev. D 55, 54 (1997).

    Google Scholar 

  70. M. Moe and P. Vogel, Annu. Rev. Nucl. Part. Sci. 44, 247 (1994).

    Article  ADS  Google Scholar 

  71. G. L. Kane, G. Golda, L. Roszkowski, and J. D. Wells, Phys. Rev. D 49, 6173 (1994).

    Article  ADS  Google Scholar 

  72. D. J. Kastano, E. J. Piard, and P. Ramond, Phys. Rev. D 49, 4882 (1994).

    ADS  Google Scholar 

  73. A. Wodecki, W. A. Kamiński, and F. Šimkovic, hep-ph/9902453.

  74. B. T. Cleveland et al., Nucl. Phys. B (Proc. Suppl.) 38, 47 (1995).

    Article  ADS  Google Scholar 

  75. K. S. Hirata et al., Phys. Rev. D 44, 2241 (1991).

    Article  ADS  Google Scholar 

  76. Gallex Collab., Phys. Lett. B 357, 237 (1995).

    ADS  Google Scholar 

  77. J. N. Abdurashitov et al., Phys. Lett. B 328, 234 (1994).

    ADS  Google Scholar 

  78. Y. Fukuda et al., Phys. Lett. B 335, 237 (1994).

    ADS  Google Scholar 

  79. R. Becker-Szendy et al., Nucl. Phys. B (Proc. Suppl.) 38, 331 (1995).

    Article  ADS  Google Scholar 

  80. M. Goodman, Nucl. Phys. B (Proc. Suppl.) 38, 337 (1995).

    Article  ADS  Google Scholar 

  81. Y. Fukuda et al., Phys. Lett. B 433, 9 (1998).

    ADS  Google Scholar 

  82. C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1995).

    Article  ADS  Google Scholar 

  83. S. M. Bilenky, C. Giunti, and W. Grimus, hep-ph/9812360.

  84. V. Bednyakov, A. Faessler, and S. Kovalenko, Phys. Lett. B 442, 203 (1998).

    ADS  Google Scholar 

  85. G. Barenboim and F. Scheck, Phys. Lett. B 440, 332 (1998).

    ADS  Google Scholar 

  86. J. Hellming and H. V. Klapdor-Kleingrothaus, Z. Phys. A 359, 351 (1997); H. V. Klapdor-Kleingrothaus and M. Hirsch, Z. Phys. A 359, 361 (1997); H. V. Klapdor-Kleingrothaus, hep-ex/9901021.

    Google Scholar 

  87. M. Hirsch, H. V. Klapdor-Kleingrothaus, and S. G. Kovalenko, Phys. Lett. B 398, 311 (1997); 403, 291 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

From Yadernaya Fizika, Vol. 63, No. 7, 2000, pp. 1213–1226.

Original English Text Copyright © 2000 by Vergados.

This article was submitted by the author in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergados, J.D. Double-beta decay in gauge theories. Phys. Atom. Nuclei 63, 1137–1150 (2000). https://doi.org/10.1134/1.855759

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.855759

Keywords

Navigation