Skip to main content
Log in

Polarization in the quasielastic scattering of 1-GeV/c protons on light nuclei

  • Elementary Particles and Fields
  • Experiment
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Polarization measurements in the A(p, 2p)B reactions on 6Li, 7Li, and 28Si nuclei at a proton-beam energy of 1 GeV were performed in a kinematically complete experiment. By using a two-arm magnetic spectrometer, two secondary protons were recorded in coincidence at asymmetric scattering angles of θ1=15°−26° and θ2=58.6° for residual-nucleus momenta in the range K B=0–150 MeV/c. Either arm of the spectrometer was equipped with polarimeters based on proportional chambers. The data coming from this experiment are analyzed within the distorted-wave impulse approximation. It is shown that the polarization of recoil protons formed at angle θ2 in the interaction featuring a proton from the P shell of the 7Li nucleus can be described under the assumption of an effective intranuclear-proton polarization by using the single-particle shell-model wave function of the nucleus. Our data on the polarizations of the two protons from the reaction (p, 2p) on a 28Si nucleus also suggest the effective polarization of the protons in the D shell of the 28Si nucleus. It is found that, for high recoil-nucleus momenta of K B≥90 MeV/c, the effective polarization of the protons in the P shell of the 6Li nucleus—this polarization was discovered in studying the polarization of recoil protons in the reaction 6Li(p, 2p)5He—cannot be described within the shell model assuming LS coupling. As might have been expected, the polarization of recoil protons knocked out from the S shells of the 6Li and 7Li nuclei comply well with the predictions obtained in the impulse approximation with allowance for the depolarization effect alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Berggren et al., Annu. Rev. Nucl. Sci. 16, 153 (1966).

    Article  ADS  Google Scholar 

  2. G. Jacob et al., Nucl. Phys. A 257, 517 (1976).

    ADS  Google Scholar 

  3. Th. A. J. Maris, Nucl. Phys. 9, 577 (1958/59).

    Google Scholar 

  4. G. Jacob et al., Phys. Lett. B 45, 181 (1973).

    ADS  Google Scholar 

  5. V. S. Nadejdin et al., Preprint No. E1-7559, JINR (Dubna, 1973); Preprint No. E1-10820, JINR (Dubna, 1977).

  6. P. Kitching et al., Phys. Rev. Lett. 37, 1600 (1976); Nucl. Phys. A 340, 423 (1980).

    Article  ADS  Google Scholar 

  7. F. Fernández et al., Phys. Lett. B 106, 15 (1981).

    ADS  Google Scholar 

  8. O. V. Miklukho et al., in Proceedings of the International Conference “SPIN-97,” Dubna, 1997 (JINR, Dubna, 1997), No. E2-97-413, p. 246.

    Google Scholar 

  9. N. P. Aleshin et al., Preprint No. 1971, PINP (Gatchina, 1994).

  10. O. Ya. Fedorov, Preprint No. 484, LNPI (Leningrad, 1979).

  11. G. Waters et al., Nucl. Instrum. Methods 153, 401 (1978).

    Article  Google Scholar 

  12. R. A. Arndt et al., Phys. Rev. D 28, 97 (1983).

    Article  ADS  Google Scholar 

  13. E. F. Redish et al., Phys. Rev. C 2, 1665 (1970).

    Article  ADS  Google Scholar 

  14. C. L. Belostotskii et al., Yad. Fiz. 42, 1427 (1985) [Sov. J. Nucl. Phys. 42, 904 (1985)].

    Google Scholar 

  15. Th. A. J. Maris et al., Nucl. Phys. A 322, 461 (1979).

    ADS  Google Scholar 

  16. A. Arima et al., Adv. Nucl. Phys. 5, 345 (1972).

    Google Scholar 

  17. L. R. B. Elton and A. Swift, Nucl. Phys. A 94, 52 (1967).

    ADS  Google Scholar 

  18. R. Hofstadter, Annu. Rev. Nucl. Sci. 7, 231 (1957).

    Article  ADS  MATH  Google Scholar 

  19. A. A. Vorob’ev et al., Yad. Fiz. 57, 3 (1994) [Phys. At. Nucl. 57, 1 (1994)].

    MathSciNet  Google Scholar 

  20. P. E. Nemirovski, in Nuclear Models (Compton Printing Works, Kings College, London, 1962), p. 36.

    Google Scholar 

  21. A. Johansson and Y. Sakamoto, Nucl. Phys. 42, 625 (1963).

    Google Scholar 

  22. T. Berggren and G. Jacob, Phys. Lett. 1, 258 (1962).

    ADS  Google Scholar 

  23. G. R. Satchler and R. M. Maybron, Phys. Lett. 11, 313 (1964).

    ADS  Google Scholar 

  24. A. K. Kerman et al., Ann. Phys. (N.Y.) 8, 551 (1959).

    Article  Google Scholar 

  25. T. Berggren and G. Jacob, Nucl. Phys. 47, 481 (1963).

    Google Scholar 

  26. G. Krein et al., Phys. Rev. C 51, 2646 (1995).

    Article  ADS  Google Scholar 

  27. T. Noro et al., in Proceedings of the RCNP International Mini Workshop on Nuclear Medium Effect via Nucleon-Induced Reactions, Kyoto, 1997, Shiran-kaikan 42(1), 59 (1997).

    Google Scholar 

  28. C. J. Horowitz and D. F. Murdock, Phys. Rev. C 37, 2032 (1988).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Yadernaya Fizika, Vol. 63, No. 5, 2000, pp. 894–903.

Original Russian Text Copyright © 2000 by Miklukho, Aleshin, Belostotski, Grebenyuk, Fedorov, Izotov, Kisselev, Naryshkin, Nelyubin, A. Prokofiev, D. Prokofiev, Shcheglov, Shvedchikov, Vikhrov, Zhgun, Zhdanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miklukho, O.V., Aleshin, N.P., Belostotski, S.L. et al. Polarization in the quasielastic scattering of 1-GeV/c protons on light nuclei. Phys. Atom. Nuclei 63, 824–833 (2000). https://doi.org/10.1134/1.855712

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/1.855712

Keywords

Navigation