Skip to main content
Log in

Abstract:

The isotope shift (IS) and hyperfine structure (hfs) of nine levels (31720 to 38921 cm-1) assigned to the configuration 4 f 12 6 s 7 s in neutral erbium have been determined experimentally using Doppler-reduced saturation absorption spectroscopy in a gas discharge. We performed a fine structure analysis in the SL-coupling scheme of the single configuration 4 f 12 6 s 7 s, confirming and extending the classification of even parity Er I levels. We discriminated the different hfs contributions of the 4f12 core and the (6 s +7 s) outer electrons of the shell in a non-relativistic JJ-coupling approach and in the relativistic effective tensor operator formalism in SL-coupling. The relativistic one-electron parameters of the hfs for 167Er were fitted to the experimental data by a least squares fit procedure: [0pt] a 01 4f =-147(3) MHz, [0pt] a 10 6s + a 10 7s =-1840(30) MHz, [0pt] b 02 4f =6560(80) MHz. The level dependencies of the isotope shift were evaluated based on crossed second order (CSO) effects. We obtained the following results for the CSO parameters for the isotope pairs 170-168Er: d 6s7s =-740(30) MHz, z 4f = 0(5) MHz, ( g 3,6s ( f , 6 s )+ g 3, 7s ( f , 7 s ))= -24(15) MHz and for 170-166Er: d 6s7s =-1500(50) MHz, z 4f =0(10) MHz, ( g 3,6s ( f ,6 s )+ g 3,7s ( f +7 s ))=-50(29) MHz. The resulting parameters for the hfs are compared with those known for other configurations of the Er atom and ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Received 16 May 1999 and Received in final form 31 January 2000

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkenasi, D., Kröger, S. & Kronfeldt, HD. Finestructure, hyperfine structure and isotope shift of 4f 6s7s in Er I. Eur. Phys. J. D 11, 197–205 (2000). https://doi.org/10.1007/s100530070084

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s100530070084

Navigation