NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = V.V.Sargsyan

Found 57 matches.

Back to query form



2024AD01      Phys.Rev. C 109, 014602 (2024)

G.G.Adamian, N.V.Antonenko, H.Lenske, V.V.Sargsyan

Application of a universal reaction function to the description of heavy-ion reaction cross sections

doi: 10.1103/PhysRevC.109.014602
Citations: PlumX Metrics


2024SE01      Phys.Rev. C 109, 034604 (2024)

W.M.Seif, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko

Influences of isospin-asymmetry and skin thickness on fusion of oxygen isotopes at stellar energies

doi: 10.1103/PhysRevC.109.034604
Citations: PlumX Metrics


2022AN23      Eur.Phys.J. A 58, 211 (2022)

N.V.Antonenko, G.G.Adamian, V.V.Sargsyan, H.Lenske

Double-folding nucleus-nucleus interaction potential based on the self-consistent calculations

NUCLEAR STRUCTURE 16O, 40,48Ca; calculated self-consistent HFB nucleon-density distributions.

NUCLEAR REACTIONS 12C, 16O, 30Si(12C, X), 16O(16O, X), 28Si, 30Si(28Si, X), 30Si, 24Mg(30Si, X), 40Ca(40Ca, X), 48Ca, 36S(48Ca, X), 36S(64Ni, X), E not given; analyzed available data; deduced the centroids of the experimental barrier distributions for self-consistently defined nucleus–nucleus potentials.

doi: 10.1140/epja/s10050-022-00865-w
Citations: PlumX Metrics


2022SA02      Phys.Lett. B 824, 136792 (2022)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, H.Lenske

Constraints on the appearance of a maximum in astrophysical S-factor

NUCLEAR REACTIONS 12C, 16O, 30Si(12C, X), 16O(16O, X), 28,30Si(28Si, X), (30Si, X), 30Si(24Mg, X), 40Ca(40Ca, X), 48Ca(48Ca, X), (36S, X), 64Ni(36S, X), E not given; analyzed available data; deduced σ, S-factors.

doi: 10.1016/j.physletb.2021.136792
Citations: PlumX Metrics


2020SA05      Eur.Phys.J. A 56, 19 (2020)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, H.Lenske

Extended quantum diffusion approach to reactions of astrophysical interests

doi: 10.1140/epja/s10050-019-00009-7
Citations: PlumX Metrics


2019SA65      Acta Phys.Pol. B50, 507 (2019)

V.V.Sargsyan, H.Lenske, G.G.Adamian, N.V.Antonenko

From Dinuclear Systems to Close Binary Stars: Application to Mass Transfer

doi: 10.5506/aphyspolb.50.507
Citations: PlumX Metrics


2017SA28      Phys.Rev. C 95, 054619 (2017)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Comparative analysis of the fusion reactions 48Ti + 58Fe and 58Ni + 54Fe

NUCLEAR REACTIONS 48Ti(58Fe, X), E(cm)=65-90 MeV; 58Ni(54Fe, X), E(cm)=85-110 MeV; analyzed experimental reduced fusion excitation functions, capture probabilities, fusion (capture) σ(E), fusion barrier distributions by universal fusion function; deduced astrophysical S factor, enhancement of sub-barrier fusion cross section. Quantum diffusion approach and the universal fusion function representation.

doi: 10.1103/PhysRevC.95.054619
Citations: PlumX Metrics


2016SA23      Phys.Rev. C 93, 054613 (2016)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, A.Diaz-Torres, P.R.S.Gomes, H.Lenske

Experimental elastic and quasi-elastic angular distributions provide transfer probabilities

NUCLEAR REACTIONS 206Pb(18O, 16O), E=79 MeV; calculated two-neutron transfer probabilities using experimental data for elastic and quasielastic probabilities in 18O+206Pb and 16O+208Pb reactions. Comparison with experimental data for two-neutron transfer reaction.

doi: 10.1103/PhysRevC.93.054613
Citations: PlumX Metrics


2016SC24      Phys.Rev. C 94, 064606 (2016)

G.Scamps, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, D.Lacroix

Extraction of pure transfer probabilities from experimental transfer and capture data

NUCLEAR REACTIONS 96Zr(40Ca, X), E=84-111 MeV; calculated s-wave capture probability, one- and two-neutron transfer probabilities. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.064606
Citations: PlumX Metrics


2015KU19      Phys.Rev. C 92, 014603 (2015)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko

Entrance channel effects on sub-barrier capture

NUCLEAR REACTIONS 152Sm(16O, X), E(cm)=45-75 MeV; 184W(16O, X), E(cm)=58-88 MeV; 175Lu(19F, X), E(cm)=60-93 MeV; 100Mo(64Ni, X), E(cm)=118-162 MeV; 58Ni(60Ni, X), E(cm)=87-121 MeV; 90,94Zr(32S, X), E(cm)=73.2, 78.2, 83.2 MeV; 90,94Zr(40Ca, X), E(cm)=90.7, 95.7, 100.7 MeV; 144Sm(12C, X), 92Zr(64Ni, X), E(cm)-Vb=-12 to 35 MeV; 144Nd(16O, X), 123Sb(37Cl, X), 96Zr(64Ni, X), 80Se(80Se, X), E(cm)-Vb=-13 to 26 MeV; 142Ce(28Si, X), 138Ba(32S, X), 122Sn(48Ti, X), E(cm)-Vb=-12 to 38 MeV; 204Pb(12C, X), 186W(30Si, X), 168Er(48Ca, X), E(cm)-Vb=-20-40 MeV; 204Pb(16O, X), 186W(34S, X), 170Er(50Ti, X), 124Sn(96Zr, X), E(cm)-Vb=-17 to 26 MeV; 144Nd(16O, X), E(cm)-Vb=13 MeV; 96Zr(64Ni, X), E(cm)-Vb=11 MeV; calculated capture σ(E), partial capture cross sections and the mean angular momenta for compound nuclei of 156,160Er, 170Hf, 200Pb, 216Ra and 220Th; investigated deformation, neutron transfer, and entrance channel mass (charge) asymmetry effects. Quantum diffusion approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.014603
Citations: PlumX Metrics


2015OG06      Phys.Atomic Nuclei 78, 985 (2015); Yad.Fiz. 78, 1047 (2015)

A.A.Ogloblin, H.Q.Zhang, C.J.Lin, H.M.Jia, S.V.Khlebnikov, E.A.Kuzmin, A.N.Danilov, A.S.Demyanova, W.H.Trzaska, X.X.Xu, F.Yang, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid

Analysis of the role of neutron transfer in asymmetric fusion reactions at subbarrier energies

NUCLEAR REACTIONS 208Pb(28Si, X), E=130-140 MeV; measured reaction products; deduced capture σ. Comparison with calculated values.

doi: 10.1134/S1063778815080116
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetF1280.


2015SA02      Phys.Rev. C 91, 014613 (2015)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Examination of the different roles of neutron transfer in the sub-barrier fusion reactions 32S + 94, 96Zr and 40Ca + 94, 96Zr

NUCLEAR REACTIONS 90,94,96Zr(40Ca, X), E(cm)=84-108 MeV; 90,96Zr(48Ca, X), E(cm)=88-109 MeV; 90,94,96Zr(32S, X), E(cm)=70-86 MeV; 90,96Zr(36S, X), E(cm)=71-186 MeV; calculated capture cross sections and compared with experimental data, analyzed experimental reduced fusion excitation functions; deduced s-wave capture probabilities as function of incident energy. Quantum diffusion approach and the universal fusion function representation.

doi: 10.1103/PhysRevC.91.014613
Citations: PlumX Metrics


2015SA45      Phys.Rev. C 92, 054613 (2015)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, Z.Kohley

Isotopic trends in capture reactions with radioactive and stable potassium beams

NUCLEAR REACTIONS 208Pb, 124Sn(37K, X), (39K, X), (41K, X), (43K, X), (45K, X), (46K, X), (47K, X), E(cm)-Vb=-10 to 15 MeV; calculated capture σ((E(cm)-Vb), A); deduced isospin dependence of the capture cross sections. 208Pb(46K, X), (48Ca, X), E(cm)=157-190 MeV; 124Sn(46K, X), (48Ca, X), E(cm)-Vb=-6 to 15 MeV; calculated capture σ(E), and compared with experimental data. Quantum diffusion approach. Role of isospin and closed shell structures in the entrance channel for the production of new isotopes.

doi: 10.1103/PhysRevC.92.054613
Citations: PlumX Metrics


2015SA46      Phys.Rev. C 92, 054620 (2015)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, A.Diaz-Torres, P.R.S.Gomes, H.Lenske

Derivation of breakup probabilities of weakly bound nuclei from experimental elastic and quasi-elastic scattering angular distributions

NUCLEAR REACTIONS 206Pb(6He, 6He), (6He, 6He'), E=16 MeV; 210Pb(α, α), (α, α'), E=17.71 MeV; devised a simple method and a formula relating the breakup and elastic (quasi-elastic) scattering probabilities; calculated breakup probability for 6He+206Pb reaction, and compared with continuum-discretized coupled-channels (CDCC) calculations.

doi: 10.1103/PhysRevC.92.054620
Citations: PlumX Metrics


2015SC03      Phys.Rev. C 91, 024601 (2015)

G.Scamps, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, D.Lacroix

Analysis of the dependence of the few-neutron transfer probability on the Q-value magnitudes

NUCLEAR REACTIONS 116,124,130Sn(40Ca, xn), at Vb-E(cm)<25 MeV; analyzed dependence of one-, two-, three-, and four-neutron transfer probabilities on the magnitudes of Q values, and compared with calculations of nucleon transfer probabilities within the time-dependent Hartree-Fock plus BCS approach.

doi: 10.1103/PhysRevC.91.024601
Citations: PlumX Metrics


2014OG01      Eur.Phys.J. A 50, 157 (2014)

A.A.Ogloblin, H.Q.Zhang, C.J.Lin, H.M.Jia, S.V.Khlebnikov, E.A.Kuzmin, W.H.Trzaska, X.X.Xu, F.Yan, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid

Role of neutron transfer in asymmetric fusion reactions at sub-barrier energies

NUCLEAR REACTIONS 208Pb(28Si, x), (30Si, x), E(cm)≈115-150 MeV; measured reaction products using SSTD array; deduced fusion σ. 208Pb(20Ne, x), E(cm)=85-109 MeV;208Pb(28Si, x), (30Si, x), E(cm)≈115-150 MeV; calculated fusion σ using quantum diffusion approach. Compared with other available data. 7

doi: 10.1140/epja/i2014-14157-y
Citations: PlumX Metrics

Data from this article have been entered in the EXFOR database. For more information, access X4 datasetF1280.


2014SA24      Eur.Phys.J. A 50, 71 (2014)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Derivation of breakup probabilities from experimental elastic backscattering data

NUCLEAR STRUCTURE 6,8He, 8Li, 7,9,11Be, 8,9B, 15C, 17F; calculated breakup probability near and above Coulomb barrier.

doi: 10.1140/epja/i2014-14071-4
Citations: PlumX Metrics


2014SA70      Phys.Rev. C 90, 064601 (2014)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, A.Diaz-Torres, P.R.S.Gomes, H.Lenske

Deriving capture and reaction cross sections from observed quasi-elastic and elastic backscattering

NUCLEAR REACTIONS 58Ni(58Ni, 58Ni), (58Ni, 58Ni'), E=86-118 MeV; 74Ge(64Ni, 64Ni), (64Ni, 64Ni'), E=96-120 MeV; 92Mo(α, α), (α, α'), E=13.20, 18.70 MeV; 106,110Cd(α, α), (α, α'), E=15.55, 18.8 MeV; 112Sn(α, α), (α, α'), E=13.90, 18.84 MeV; 120Sn(16O, 16O), (16O, 16O'), E=Vb, Vb+5 MeV, Vb+10 MeV; 144,154Sm(16O, 16O), (16O, 16O'), E=55-80 MeV; 152Sm(16O, 16O), (16O, 16O'), E=58.8, 63.3, 72.4 MeV; 208Pb(6Li, 6Li), (6Li, 6Li'), (7Li, 7Li), (7Li, 7Li'), E=Vb+5 MeV, Vb+10 MeV; 208Pb(16O, 16O), (16O, 16O'), E=65-95 MeV; 208Pb(20Ne, 20Ne), (20Ne, 20Ne'), E=Vb, Vb+5 MeV, Vb+10 MeV; analyzed and proposed methods for extracting differential and integral reaction and capture σ(E, J) from the experimental elastic and quasi-elastic backscattering measurements. Coupled-channels approach.

doi: 10.1103/PhysRevC.90.064601
Citations: PlumX Metrics


2014SA75      Eur.Phys.J. A 50, 168 (2014)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, A.Diaz-Torres, P.R.S.Gomes, H.Lenske

Extracting integrated and differential cross sections in low-energy heavy-ion reactions from backscattering measurements

NUCLEAR REACTIONS 110Cd, 120Sn(α, x), E=9.5-20 MeV; calculated coupled-reaction channels σ, reaction σ, elastic scattering σ(θ) using backscattering data. 92Mo(α, x), E=10-20 MeV;120Sn(α, x), E=11-30 MeV;208Pb(16O, x), E=67-80 MeV; calculated reaction σ (in the case of 16O also capture σ). Compared with data and other calculations.

doi: 10.1140/epja/i2014-14168-8
Citations: PlumX Metrics


2014SA77      Eur.Phys.J. A 50, 184 (2014)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, P.R.S.Gomes

Disagreement between capture probabilities extracted from capture and quasi-elastic backscattering excitation functions

NUCLEAR REACTIONS 120Sn(16O, x), E(cm)=44-59 MeV;144Sm(16O, x), E(cm)=63-78 MeV;208Pb(16O, x), E(cm)=56-70 MeV; calculated, extracted s-wave capture probability using quasi-elastic backscattering σ data and capture σ.

doi: 10.1140/epja/i2014-14184-8
Citations: PlumX Metrics


2013KU05      Acta Phys.Pol. B44, 471 (2013)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko

Study of Isotopic Effects in Capture Process

NUCLEAR REACTIONS 144,150,154Sm(48Ca, X), 154Sm(40Ca, X), E(cm)<150 MeV; calculated σ.

doi: 10.5506/APhysPolB.44.471
Citations: PlumX Metrics


2013KU16      Phys.Atomic Nuclei 76, 716 (2013); Yad.Fiz. 76, 766 (2013)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko

Total and partial capture cross sections in reactions with deformed nuclei at energies near and below the Coulomb barrier

NUCLEAR REACTIONS 112Cd(16O, X), E(cm)<50 MeV;152Sm(16O, X), E(cm)<75 MeV;184W(16O, X), E(cm)<85 MeV;64Ni(64Ni, X), E(cm)<110 MeV;92Zr(64Ni, X), E(cm)<156 MeV;96Zr(64Ni, X), E(cm)<156 MeV;175Lu(19F, X), E(cm)<90 MeV;94Mo(28Si, X), E(cm)<95 MeV;154Sm(28Si, X), E(cm)<120 MeV;64Ni(58Ni, X), E(cm)<110 MeV;100Mo(64Ni, X), E<160 MeV;96Zr(40Ca, X), E(cm)<110 MeV;90Zr(48Ca, X), E(cm)<115 MeV; calculated total and partial capture σ and the mean angular momenta of the captured systems. Quantum diffusion approach, comparison with available data.

doi: 10.1134/S1063778813060094
Citations: PlumX Metrics


2013KU17      Bull.Rus.Acad.Sci.Phys. 77, 803 (2013); Izv.Akad.Nauk RAS, Ser.Fiz 77, 886 (2013)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, E.E.Saperstein, S.V.Tolokonnikov

Study of isotopic chain capture

NUCLEAR REACTIONS 196,200,204,208Pb(16O, X), E(cm)<100 MeV; 196,200,204,208Pb(48Ca, X), E(cm)<190 MeV; 152,154Sm(16O, X), E(cm)<75 MeV; calculated σ, mean-square angular momenta. Double-folding formalism with the effective Migdal nucleon-nucleon interaction, comparison with experimental data.

doi: 10.3103/S1062873813070150
Citations: PlumX Metrics


2013SA03      Eur.Phys.J. A 49, 19 (2013)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Threshold energy for sub-barrier fusion hindrance phenomenon

NUCLEAR REACTIONS 120Sn(16O, X), E(cm)=38-64 MeV; calculated quasielastic barrier, sub-barrier fusion threshold energy, barrier distribution, σ. 208Pb(16O, X), E(cm)=65-87 MeV;208Pb(α, X), E(cm)=17-27 MeV; calculated quasielastic barrier, sub-barrier fusion threshold energy, barrier distribution, σ. Quantum diffusion approach; compared with available data.

doi: 10.1140/epja/i2013-13019-6
Citations: PlumX Metrics


2013SA07      Phys.Rev. C 87, 044611 (2013)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, P.R.S.Gomes

Derivation of capture cross sections from quasi-elastic excitation functions

NUCLEAR REACTIONS 120Sn(16O, X), 124Sn(18O, X), E(cm)=44-60 MeV; 208Pb(16O, X), E(cm)=60-110 MeV; 144Sm(16O, X), E(cm)=54-68 MeV; 208Pb(20Ne, X), E(cm)=85-110 MeV; 154Sm(16O, X), E(cm)=48-96 MeV; 90,96Zr(32S, X), E(cm)=70-96 MeV; 208Pb(48Ti, X), (54Cr, X), (56Fe, X), (64Ni, X), (70Zn, X), E(cm)=180-260 MeV; 208Pb(6Li, X), E(cm)=20-40 MeV; analyzed quasi-elastic scattering σ(E); deduced capture σ(E), maximal angular momenta, average angular momentum.

doi: 10.1103/PhysRevC.87.044611
Citations: PlumX Metrics


2013SA31      Eur.Phys.J. A 49, 54 (2013)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Sub-barrier capture reactions with 16, 18O and 40, 48Ca beams

NUCLEAR REACTIONS 50Cr(18O, X), 52Cr(16O, X), E(cm)=14-58 MeV;74Ge(18O, X), 76Ge(16O, X), E(cm)=27-42 MeV;92Mo(16O, X), 92Mo(18O, X), E(cm)=35-59 MeV;112,118,124Sn(18O, X), E(cm)=42-81 MeV;124,132Sn(40Ca, X), (48Ca, X), E(cm)=105-135 MeV; calculated σ. 74Ge(18O, X), 76Ge(16O, X), E(cm)=30-50 MeV;144,154Sm(16O, X), E(cm)≈50-70 MeV; calculated quasielastic σ. Quantum diffusion approach, compared to data.

doi: 10.1140/epja/i2013-13054-3
Citations: PlumX Metrics


2013SA50      Phys.Rev. C 88, 044606 (2013)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, P.R.S.Gomes

Derivation of reaction cross sections from experimental elastic backscattering probabilities

NUCLEAR REACTIONS 92Mo, 110Cd, 112Sn, 116Cd, 120Sn(α, X), (α, α), E(cm)=10-30 MeV; 208Pb(16O, X), (16O, 16O), E(cm)=68-80 MeV; 64Zn(6Li, X), (7Li, X), E(cm)=7-24 MeV; calculated reaction σ(E) using a new relation between elastic scattering excitation function at backward angle and the reaction cross section. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.044606
Citations: PlumX Metrics


2013SA55      Phys.Rev. C 88, 054609 (2013)

V.V.Sargsyan, A.S.Zubov, G.G.Adamian, N.V.Antonenko, S.Heinz

Production of exotic isotopes in complete fusion reactions with radioactive beams

NUCLEAR REACTIONS 130,132,134,136,138,140,142,144,146,148,150Xe(48Ca, X), E near Coulomb barrier; calculated complete σ(E), 146,148Xe(48Ca, xn)186W/187W/188W/189W/190W/191W, E(cm)=105-147 MeV; 123,125Cs(69Ga, xn)188Rn/189Rn/190Rn/191Rn/192Rn, E*=25-75 MeV; calculated σ(evaporation residues); deduced comparison between complete fusion and fragmentation reaction cross sections. Quantum diffusion approach.

doi: 10.1103/PhysRevC.88.054609
Citations: PlumX Metrics


2013SA64      Phys.Rev. C 88, 064601 (2013)

V.V.Sargsyan, G.Scamps, G.G.Adamian, N.V.Antonenko, D.Lacroix

Neutron-pair transfer in the sub-barrier capture process

NUCLEAR REACTIONS 58Ni(64Ni, 2n), E(cm)=88-110 MeV; 64Ni(132Sn, 2n), E(cm)=145-220 MeV; 40Ca(48Ca, 2n), E(cm)=46-66 MeV; 40Ca(116Sn, 2n), (124Sn, 2n), E(cm)=106-133 MeV; 102,104Ru, 104,106Pd(32S, 2n), E(cm)=74-94 MeV; calculated 2n transfer σ(E). 58Ni(62Ni, X), 40Ca(64Ni, X), E(cm)-Vb=-8 to 11 MeV; calculated capture σ(E). 116,124,130Sn(40Ca, n), 116,124,130Sn(40Ca, 2n), B0-E(cm)<22 MeV; calculated one-neutron and two-neutron transfer probabilities. Comparison with experimental data. TDHF plus BCS Within the quantum diffusion approach for neutron pair transfer and pair correlation phenomenon. Evidence for dominance of the dineutron (preformed dineutron-like clusters) structure.

doi: 10.1103/PhysRevC.88.064601
Citations: PlumX Metrics


2013ZU03      Phys.Rev. C 88, 034607 (2013)

A.S.Zubov, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko

Population of the yrast superdeformed band in 152Dy within a cluster approach

NUCLEAR REACTIONS 108Pd(48Ca, 4n)152Dy, E=191, 197, 205, 212 MeV; 120Sn(36S, 4n)152Dy, E=145-190 MeV; 124Sn(33S, 5n)152Dy, E=145-180 MeV; 80Se(74Ge, 2n)152Dy, E=225-285 MeV; 82Se(74Ge, 4n)152Dy, E=270-330 MeV; 120Sn(37Cl, 4np)152Dy, E=175-225 MeV; 123Sb(37Cl, 4nα)152Dy, E=180-235 MeV; calculated capture σ and σ for superdeformed (SD) band population as function of spin, probability Pγ of emission of a rotational γ quantum from SD state, collective rotational E2-transition intensities in SD and normal deformed (ND) bands, Sd/ND band intensities. Dinuclear system approach with quantum diffusion and statistical methods. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.034607
Citations: PlumX Metrics


2012KU12      Phys.Rev. C 85, 034612 (2012)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, E.E.Saperstein, S.V.Tolokonnikov

Isotopic trends of capture cross section and mean-square angular momentum of the captured system

NUCLEAR REACTIONS 196,200,204,208Pb(α, X), E(cm)=13-40 MeV; 196,200,204,208Pb(16O, X), E=60-105 MeV; 196,200,204,208Pb(36S, X), E(cm)=130-175 MeV; 196,200,204,208Pb(48Ca, X), E(cm)=165-195 MeV; 70,72,74,76Ge(16O, X), E(cm)=25-50 MeV; calculated nucleus-nucleus interaction potentials, diffuseness parameter as function of mass number, Coulomb barriers, capture cross sections, mean-square angular momenta, astrophysical S factor. Quantum diffusion approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.034612
Citations: PlumX Metrics


2012KU17      Phys.Atomic Nuclei 75, 439 (2012); Yad.Fiz. 75, 475 (2012)

R.A.Kuzyakin, V.V.Sargsyan, G.G.Adamian and N.V.Antonenko

Quantum diffusion description of the subbarrier-capture process in heavy-ion reactions

NUCLEAR REACTIONS 208Pb, 209Bi(16O, X), (22Ne, X), (48Ca, X), (50Ti, X), (α, X), (36S, X), E(cm)<200 MeV;calculated subbarrier-capture σ. Comparison with available data.

doi: 10.1134/S1063778812030118
Citations: PlumX Metrics


2012SA04      Phys.Rev. C 85, 017603 (2012)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, C.J.Lin, H.Q.Zhang

Oblate-prolate deformation effect in capture reactions at sub-barrier energies

NUCLEAR REACTIONS 144Sm(16O, X), E(cm)=50-90 MeV; 144Sm(48Ca, X), E(cm)=125-160 MeV; 74Ge(74Ge, X), E(cm)=105-140 MeV; 170Er, 174Yb(36S, X), E(cm)=105-150 MeV; calculated capture cross section, mean angular momentum. Oblate and prolate deformation effects. Quantum-diffusion approach applied for the capture process in the reactions with deformed nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.017603
Citations: PlumX Metrics


2012SA09      Phys.Rev. C 85, 024616 (2012); Erratum Phys.Rev. C 85, 069903 (2012)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Role of neutron transfer in capture processes at sub-barrier energies

NUCLEAR REACTIONS 124Sn(40Ca, X), E(cm)=106-127 MeV; 90,96Zr(40Ca, X), E(cm)=85-113 MeV; 130Te, 132Sn(58Ni, X), (64Ni, X), E(cm)=140-200 MeV; 208Pb(58Ni, X), (64Ni, X), E(cm)=220-245 MeV; 132Sn(40Ca, X), (48Ca, X), E(cm)=98-144 MeV; 100Mo(60Ni, X), (64Ni, X), E(cm)=118-162 MeV; 150Nd(60Ni, X), (64Ni, X), E(cm)=160-210 MeV; calculated capture cross sections and reduced capture cross sections with and without 2-neutron transfer. Quantum diffusion approach for transfer of neutrons. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024616
Citations: PlumX Metrics


2012SA13      Phys.Rev. C 85, 037602 (2012)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, C.J.Lin, H.Q.Zhang

Deformation effect in the sub-barrier capture process

NUCLEAR REACTIONS 198Pt(28Si, X), E(cm)=105-142 MeV; 194Pt(40Ca, X), E(cm)=153-200 MeV; 194Pt, 190Os(48Ca, X), E(cm)=150-175 MeV; 194Pt, 190Os(36S, X), E(cm)=115-141 MeV; calculated capture cross sections, mean angular momenta; deduced oblate and prolate deformation effects. Quantum-diffusion approach applied for capture process in reactions with deformed nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.037602
Citations: PlumX Metrics


2012SA30      Phys.Rev. C 86, 014602 (2012)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Influence of neutron transfer in reactions with weakly and strongly bound nuclei on the sub-barrier capture process

NUCLEAR REACTIONS 232Th(12C, X), (13C, X), (14C, X), (15C, X), E(cm)=49-79 MeV; 237Np(12C, X), E(cm)=50-78 MeV; 206Pb(6He, X), 208Pb(α, X), E(cm)=12-26 MeV; 208Pb(12C, X), (13C, X), (14C, X), (15C, X), E(cm)=48-79 MeV; 208Pb(18O, X), E(cm)=66-86 MeV; 126Sn(40Ca, X), (48Ca, X), E(cm)-V(b)=-13-23 MeV; 112,116,120Sn(32S, X), E(cm)=84-113 MeV; 92,94,96,98,100Mo, 100,102,104Ru, 104,106,108,110Pd (32S, X), (36S, X), E(cm)=70-96 MeV; 132Sn(32S, X), (36S, X), E(cm)-V(b)=-11-21 MeV; 112,118,124Sn(18O, X), E(cm)=41-81 MeV; 68Zn(9Li, X), 70Zn(7Li, X), E(cm)=6-22 MeV; 70Zn(9Li, X), E(cm)=8-16 MeV; calculated capture σ. Quantum diffusion approach. Comparison with experimental data. Predictions of capture σ for (13,14,15C)+208Pb, (32,36S)+132Sn, and (40,48)Ca+126Sn reactions. Discussed influence of neutron transfer on capture cross sections.

doi: 10.1103/PhysRevC.86.014602
Citations: PlumX Metrics


2012SA40      Phys.Rev. C 86, 034614 (2012)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Astrophysical s factor, logarithmic slope of the excitation function, and barrier distribution

NUCLEAR REACTIONS 54Fe, 58,60,64Ni(58Ni, X), E=82-114 MeV; 40Ca(40Ca, X), E=46-67 MeV; 89Y(60Ni, X), E=119-139 MeV; 90,96Zr(48Ca, X), (40Ca, x), (32S, X), E=85-114 MeV; calculated capture σ(E), mean square angular momentum, astrophysical S factor, logarithmic slope of the excitation function, fusion barrier distributions. Quantum diffusion approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.034614
Citations: PlumX Metrics


2012SA52      Phys.Rev. C 86, 054610 (2012)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Search for a systematic behavior of the breakup probability in reactions with weakly bound projectiles at energies around the Coulomb barrier

NUCLEAR REACTIONS 27Al, 64Zn, 89Y, 124Sn, 144Sm, 208Pb, 209Bi(9Be, X), 64Zn, 144Sm, 198Pt, 208Pb, 209Bi(6Li, X), 27Al, 64Zn, 159Tb, 165Ho, 197Au, 209Bi(7Li, X), 70Zn, 208Pb, 209Bi(9Li, X), 208Pb(11Li, X), 64Zn, 197Au(α, X), 64Zn, 197Au, 209Bi(6He, X), 197Au(8He, X), 159Tb, 209Bi(10B, X), (11BE, X), 208Pb(11Li, X), E(cm)=5-50 MeV; calculated capture cross sections; analyzed breakup probabilities for weakly bound projectiles using experimental complete fusion σ. Quantum diffusion approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.054610
Citations: PlumX Metrics


2012SA59      Eur.Phys.J. A 48, 188 (2012)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Quasifission at extreme sub-barrier energies

NUCLEAR REACTIONS 92Mo(92Mo, X), E(cm)=178-208 MeV;94Mo(94Mo, X), E(cm)=172-207 MeV;100Ru(100Ru, X), E(cm)=185-218 MeV;104Pd(104Pd, X), E(cm)=201-240 MeV;112Sn(78Kr, X), E(cm)=170-218 MeV; calculated capture σ using quantum diffusion approach.

doi: 10.1140/epja/i2012-12188-0
Citations: PlumX Metrics


2011AD07      Int.J.Mod.Phys. E20, 919 (2011)

G.G.Adamian, N.V.Antonenko, V.V.Sargsyan, A.S.Zubov, W.Scheid

Formation of hyperdeformed states from dinuclear system

doi: 10.1142/S0218301311018976
Citations: PlumX Metrics


2011AD09      Int.J.Mod.Phys. E20, 999 (2011)

G.G.Adamian, N.V.Antonenko, V.V.Sargsyan, W.Scheid

Production of neutron-rich isotopes in transfer-type reactions

NUCLEAR REACTIONS 244Pu, 238U(48Ca, X)86Ge/88Ge/90Ge/92Ge/82Zn/84Zn/86Zn, E(cm)<201 MeV; calculated mass yields, σ. Comparison with experimental data.

doi: 10.1142/S0218301311019131
Citations: PlumX Metrics


2011SA11      Eur.Phys.J. A 47, 38 (2011)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Sub-barrier capture with quantum diffusion approach: Actinide-based reactions

NUCLEAR REACTIONS 232Th(16O, X), E(cm)=63-112 MeV;232Th(19F, X), E(cm)=66-98 MeV;232Th(32S, X), E(cm)=128-174 MeV;238U(α, X), E(cm)=14-42 MeV;238U(16O, X), E(cm)=65-105 MeV;238U(20Ne, X), E(cm)=88-128 MeV;238U(30Si, X), E(cm)=112-152 MeV;238U(32S, X), E(cm)=128-174 MeV;238U(36S, X), E(cm)=134-186 MeV;238U(48Ca, X), E(cm)=168-218 MeV;244Pu(36S, X), E(cm)=142-182 MeV;244Pu(48Ca, X), E(cm)=178-220 MeV;244Pu(50Ti, X), E(cm)=197-232 MeV;246Cm(48Ca, X), E(cm)=182-220 MeV;248Cm(36S, X), E(cm)=142-172 MeV;248Cm(48Ca, X), E(cm)=182-220 MeV; calculated σ. 232Th(16O, X), E(cm)=68-90 MeV;232Th(19F, X), E(cm)=68-98 MeV;232Th(48Ca, X), E(cm)=161-198 MeV;238U(16O, X), E(cm)=70-89 MeV; calculated mean-square angular momentum. 232Th(16O, X), E(cm)=67.5-75.5 MeV;238U(α, X), E(cm)=14.5-26.5 MeV;238U(16O, X), E(cm)=67-92 MeV; calculated S-factor. Diffusion approach to capture σ below Coulomb barrier with deformation taken into account. Comparison with available data.

doi: 10.1140/epja/i2011-11038-y
Citations: PlumX Metrics


2011SA65      Phys.Rev. C 84, 064614 (2011)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid, H.Q.Zhang

Effects of nuclear deformation and neutron transfer in capture processes, and fusion hindrance at deep sub-barrier energies

NUCLEAR REACTIONS 154Sm(48Ca, X), E(cm)=125-150 MeV; 144,154Sm(40Ar, X), E(cm)=105-145 MeV; 144,154Sm(16O, X), E(cm)=50-90 MeV; 74Ge(74Ge, X), E(cm)=105-140 MeV; 90,94Zr(28Si, X), E(cm)=60-95 MeV; 112,116,122Sn(40Ar, X), 144,154Sm(28Si, X), E(cm)=90-125 MeV; 90,96Zr(32S, X), (36S, X), E(cm)=65-95 MeV; 168Er(34S, X), E(cm)=105-140 MeV; 132Sn(64Ni, X), E(cm)=145-200 MeV; 100Mo(60Ni, X), (64Ni, X), E(cm)=120-160 MeV; 58,64Ni(58Ni, X), E(cm)=88-110 MeV; 150Nd(60Ni, X), (64Ni, X), E(cm)=160-210 MeV; 74Ge(58Ni, X), (64Ni, X), E(cm)=95-120 MeV; 208Pb(40Ca, X), (48Ca, X), E(cm)=160-195 MeV; 90,96Zr(40Ca, X), E(cm)=85-115 MeV; 94Zr(40Ca, X), E(cm)=85-105 MeV; 192Os(40Ca, X), E(cm)=150-185 MeV; 48Ca(40Ca, X), E(cm)=44-68 MeV; 194Pt(40Ca, X), E(cm)=160-200 MeV; 116,124Sn(40Ca, X), E(cm)=105-130 MeV; 110Pd(32S, X), (36S, X), E(cm)=75-95 MeV; 142Ce(28Si, X), E(cm)=85-125 MeV; 198Pt, 208Pb(28Si, X), E(cm)=110-150 MeV; 154Sm(32S, X), E(cm)=95-130 MeV; 208Pb(32S, X), E(cm)=130-160 MeV; 207Pb(58Ni, X), (64Ni, X), E(cm)=220-250 MeV; 154Sm(40Ca, X), (48Ca, X), E(cm)=120-150 MeV; 64Ni, (64Ni, X), E(cm)=85-105 MeV; 238U(40Ca, X), (48Ca, X), E(cm)=170-215 MeV; 48Ca(36S, X), E(cm)=35-55 MeV; 64Ni(36S, X), E(cm)=50-60 MeV; calculated capture cross sections. Quantum diffusion approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.064614
Citations: PlumX Metrics


2011ZU01      Phys.Rev. C 84, 044320 (2011)

A.S.Zubov, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko

Population of ground-state rotational bands of superheavy nuclei produced in complete fusion reactions

NUCLEAR REACTIONS 204Hg, 206,208Pb(48Ca, 2n)250Fm/252No/254No, E=215, 219 MeV; calculated capture cross section, fusion barrier, relative intensities of E2 transitions in yrast rotational bands, spin distribution, excitation functions. Statistical and quantum diffusion approaches. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.044320
Citations: PlumX Metrics


2010AD05      Phys.Rev. C 81, 024604 (2010)

G.G.Adamian, N.V.Antonenko, V.V.Sargsyan, W.Scheid

Possibility of production of neutron-rich Zn and Ge isotopes in multinucleon transfer reactions at low energies

NUCLEAR REACTIONS 238U(48Ca, X)82Zn/84Zn/86Zn, E(cm)=179-195 MeV; 244Pu(48Ca, X)86Ge/88Ge/90Ge/92Ge, E(cm)=179-201 MeV; calculated σ. 238U(48Ca, X), E(cm)=190.2 MeV; 244Pu(48Ca, X), E(cm)=201 MeV; calculated mass yields for A=60-142 quasifission products. Comparison with experimental data. 238U(48Ca, X)84Zn, E(cm)=179-186 MeV; calculated excitation function.

doi: 10.1103/PhysRevC.81.024604
Citations: PlumX Metrics


2010AD08      Phys.Rev. C 81, 057602 (2010)

G.G.Adamian, N.V.Antonenko, V.V.Sargsyan, W.Scheid

Predicted yields of new neutron-rich isotopes of nuclei with Z = 64-80 in the multinucleon transfer reaction 48Ca + 238U

NUCLEAR REACTIONS 238U(48Ca, xn), (48Ca, X), E(cm)=189 MeV; calculated σ for primary isotopes in neutron evaporation and secondary isotopes in other channels in Z=64-80 and A=156-214 region. Z=64, A=156-176; Z=65, A=157-177; Z=66, A=158-180; Z=67, A=163-183; Z=68, A=166-186; Z=69, A=169-187; Z=70, A=172-192; Z=71, A=175-194; Z=72, A=178-197; Z=73, A=181-199; Z=74, A=184-200; Z=75, A=189-203; Z=78, A=196-209; Z=79, A=199-211; Z=80, A=201-214; calculated yields using the diffusive multinucleon transfer reaction mechanism as an evolution of the dinuclear system (DNS).

doi: 10.1103/PhysRevC.81.057602
Citations: PlumX Metrics


2010AD12      Phys.Rev. C 82, 017601 (2010)

G.G.Adamian, N.V.Antonenko, V.V.Sargsyan, W.Scheid, A.S.Zubov

Transfer-induced fission of superheavy nuclei

NUCLEAR REACTIONS 244Cm(48Ca, F), E(cm)=207, 227 MeV; 246Cm(48Ca, F), E(cm)=205.5, 225.5 MeV; 248Cm(48Ca, F), E(cm)=204, 205, 224 MeV; calculated σ, excitation energies of the fissioning superheavy nuclei. 257,259Md, 258,260,262No, 261,263,265Lr, 264,266Rf, 265,267,269Db, 268,270,272Sg, 269,271,273Bh, 272,274Hs; calculated cross sections σf of transfer-induced fission of superheavy nuclei.

doi: 10.1103/PhysRevC.82.017601
Citations: PlumX Metrics


2010AD16      Nucl.Phys. A834, 345c (2010)

G.G.Adamian, N.V.Antonenko, V.V.Sargsyan, W.Scheid

Possibility of production of new superheavy nuclei in complete fusion reactions

NUCLEAR REACTIONS 237Np, 238U, 242,244Pu, 243Am, 245,248Cm, 249Cf(48Ca, 3n), E not given; 238U, 242,244Pu, 243Am, 248Cm(48Ca, 4n), E not given; calculated σ, survival probabilities using di-nuclear system fusion model with Dubna and GSI data.

doi: 10.1016/j.nuclphysa.2010.01.036
Citations: PlumX Metrics


2010SA32      Eur.Phys.J. A 45, 125 (2010)

V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid

Peculiarities of the sub-barrier fusion with the quantum diffusion approach

NUCLEAR REACTIONS 208Pb(16O, X), E(cm)=60-105 MeV; 208Pb(22Ne, X), E(cm)=80-130 MeV; 208Pb(48Ca, X), E(cm)=160-200 MeV; calculated σ, mean angular momentum. Comparison with data. 208Pb(16O, X), E(cm)=64-82 MeV; calculated S-factor, fusion barrier distribution.

doi: 10.1140/epja/i2010-10978-x
Citations: PlumX Metrics


2010ZU01      Phys.Rev. C 81, 024607 (2010)

A.S.Zubov, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid

Formation of hyperdeformed states by neutron emission from a dinuclear system

NUCLEAR REACTIONS 124Sn(48Ca, X), E(cm)=119.7, 122.3, 124.2, 127.8 MeV; 128Sn(48Ca, X), E(cm)=118.4, 120.5, 123.3, 126.8; 130Sn(48Ca, X), E(cm)=127, 130.4, 134.5; 132Sn(48Ca, X), E(cm)=133, 136.6, 141.8 MeV; 134Sn(48Ca, X), E(cm)=122.7, 126.7, 131.3 MeV; 136Xe(48Ca, X), E(cm)=126.3, 128.3, 130.7, 134.1 MeV; 138Xe(48Ca, X), E(cm)=119.7, 121.6, 126.2, 129.3, 133 MeV; 137Ba(48Ca, X), E(cm)=131.7, 133.6, 136.2, 139.4 MeV; 138Ba(48Ca, X), E(cm)=131, 133.9, 135.4, 138.5 MeV; 140Ba(48Ca, X), E(cm)=134, 137.1, 140.8 MeV; 83Kr(40Ca, X), E(cm)=114.7, 121.6 MeV; 84Kr(40Ca, X), E(cm)=114.6, 121.6 MeV; 83Kr(48Ca, X), E(cm)=106.5, 113.3 MeV; 84Kr(48Ca, X), E(cm)=112.3, 119.1 MeV; 86Kr(48Ca, X), E(cm)=104.8, 110.6, 117.2 MeV; 40Ca(40Ca, X), E(cm)=69.7, 76.7, 86 MeV; 48Ca(40Ca, X), E(cm)=84.6, 96 MeV; 48Ca(48Ca, X), E(cm)=66.5, 75.1, 85.2 MeV; 58Ni(58Ni, X), E(cm)=104.4, 107.6, 111.8, 116.9 MeV; 60Ni(58Ni, X), E(cm)=103.1, 106.4, 110.2, 115.2 MeV; 60Ni(60Ni, X), E(cm)=99.9, 103.3, 106.7, 11.5 MeV; 40Ca(58Ni, X), E(cm)=81.5, 85.6, 89.2, 95.4, 103 MeV; calculated production σ, quadrupole moments, moments of inertia of hyperdeformed states, nucleus-nucleus potentials, isotopic dependence of neutron binding energies and quasifission barriers, E2-transition rates and tunneling times as function of angular momentum using the cluster/molecular model of strongly deformed nuclear states.

doi: 10.1103/PhysRevC.81.024607
Citations: PlumX Metrics


2010ZU06      Phys.Rev. C 82, 034610 (2010)

A.S.Zubov, V.V.Sargsyan, G.G.Adamian, N.V.Antonenko, W.Scheid

Formation of hyperdeformed states in capture reactions at sub-barrier energies

NUCLEAR REACTIONS 40Ca(40Ca, 40Ca), 48Ca(48Ca, 48Ca), E(cm)=35-90 MeV; 58Ni(58Ni, 58Ni), 86Kr, 124Sn, 136Xe, 138Ba, 140Ce(48Ca, 48Ca), E(cm)=70-155 MeV; calculated σ for the population of high-spin hyperdeformed (HD) structures, capture probability, angular momentum and σ for high-spin HD states. Tunneling through the Coulomb barrier approach based on the reduced density matrix formalism for dinuclear or quasimolecular configurations. Discussed method of identification of hyperdeformed bands in nuclei.

doi: 10.1103/PhysRevC.82.034610
Citations: PlumX Metrics


2009AD02      Phys.Rev. C 79, 054608 (2009)

G.G.Adamian, N.V.Antonenko, V.V.Sargsyan

Stability of superheavy nuclei produced in actinide-based complete fusion reactions: Evidence for the next magic proton number at Z ≥ 120

NUCLEAR REACTIONS 237Np, 238U, 242,244Pu, 243Am, 245,248Cm, 249Cf(48Ca, xn)286Cn/290Fl/292Fl/293Lv/296Lv/297Og, E not given; analyzed survival probabilities of SHE compound nuclei from experimental cross sections for nuclei produced in the 2n-, 3n-, 4n- and 5n-reaction channels.

doi: 10.1103/PhysRevC.79.054608
Citations: PlumX Metrics


2009SA08      Phys.Atomic Nuclei 72, 425 (2009); Yad.Fiz. 72, 459 (2009)

V.V.Sargsyan, A.S.Zubov, Z.Kanokov, G.G.Adamian, N.V.Antonenko

Quantum-mechanical description of the initial stage of fusion reaction

NUCLEAR REACTIONS 198Pt(50Ti, X), E not given; 204,206,208Pb(40Ar, X), E not given; 172Yb(48Ca, X), E not given; 233,238U(16O, X), E not given; calculated evaporation residue cross sections. Compared results to data.

doi: 10.1134/S1063778809030053
Citations: PlumX Metrics


2009SA35      Phys.Rev. C 80, 034606 (2009)

V.V.Sargsyan, Z.Kanokov, G.G.Adamian, N.V.Antonenko, W.Scheid

Capture process in nuclear reactions with a quantum master equation

NUCLEAR REACTIONS 208Pb(16O, X), E(cm)=70-105 MeV; 208Pb(19F, X), E(cm)=80-135 MeV; 208Pb(26Mg, X), E(cm)=105-135 MeV; 208Pb(28Si, X), E(cm)=120-195 MeV; 208Pb(32S, X), E(cm)=140-185 MeV; 208Pb(34S, X), E(cm)=140-170 MeV; 208Pb(36S, X), (38S, X), E(cm)=140-175 MeV; 208Pb(40Ca, X), E(cm)=175-210 MeV; 208Pb(48Ca, X), E(cm)=170-205 MeV; 208Pb(50Ti, X), E(cm)=185-210 MeV; 208Pb(52Cr, X), E(cm)=205-245 MeV; 208Pb(54Fe, X), E(cm)=220-260 MeV; 208Pb(58Ni, X), E=240-280 MeV; calculated σ and capture probability using reduced-density-matrix formalism. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.034606
Citations: PlumX Metrics


2009SA40      Phys.Rev. C 80, 047603 (2009)

V.V.Sargsyan, Z.Kanokov, G.G.Adamian, N.V.Antonenko, W.Scheid

Interaction times in the 136Xe+136Xe and 238U+238U reactions with a quantum master equation

NUCLEAR REACTIONS 136Xe(136Xe, X), E(cm)=304, 324, 344, 364 MeV; 238U(238U, X), E(cm)=672.7, 762, 809.4 MeV; calculated interaction times, and nucleus-nucleus interaction potentials using reduced-density matrix formalism.

doi: 10.1103/PhysRevC.80.047603
Citations: PlumX Metrics


2008SA07      Phys.Rev. C 77, 024607 (2008)

V.V.Sargsyan, Z.Kanokov, G.G.Adamian, N.V.Antonenko

Quantum non-Markovian Langevin formalism for heavy ion reactions near the Coulomb barrier

doi: 10.1103/PhysRevC.77.024607
Citations: PlumX Metrics


2007SA60      Phys.Rev. C 76, 064604 (2007)

V.V.Sargsyan, Yu.V.Palchikov, Z.Kanokov, G.G.Adamian, N.V.Antonenko

Fission rate and transient time with a quantum master equation

doi: 10.1103/PhysRevC.76.064604
Citations: PlumX Metrics


Back to query form