NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = R.An

Found 6 matches.

Back to query form



2023DO02      Phys.Lett. B 838, 137726 (2023)

X.-X.Dong, R.An, J.-X.Lu, L.-S.Geng

Nuclear charge radii in Bayesian neural networks revisited

NUCLEAR STRUCTURE Z>19; analyzed available data; deduced nuclear charge radii using a refined Bayesian neural network (BNN) based approach with six inputs including the proton number, mass number, and engineered features associated with the pairing effect, shell effect, isospin effect, and "abnormal" shape staggering effect of mercury nuclei.

doi: 10.1016/j.physletb.2023.137726
Citations: PlumX Metrics


2022AN05      Phys.Rev. C 105, 014325 (2022)

R.An, X.Jiang, L.-G.Cao, F.-S.Zhang

Odd-even staggering and shell effects of charge radii for nuclei with even Z from 36 to 38 and from 52 to 62

NUCLEAR STRUCTURE 72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102Kr, 74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104Sr, 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150Te, 110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156Xe, 116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162Ba, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158Ce, 126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160Nd, 130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165Sm; calculated charge radii and odd-even staggering (OES) effects by the relativistic mean field (RMF-BCS) and the modified RMF(BCS)* approaches; deduced no significant influence of neutron-proton short-range correlations (np-SRCs) for some nuclei due to the strong coupling between different levels around Fermi surface. Comparison with available experimental data.

doi: 10.1103/PhysRevC.105.014325
Citations: PlumX Metrics


2022AN12      Chin.Phys.C 46, 054101 (2022)

R.An, S.-S.Zhang, L.-S.Geng, F.-S.Zhang

Charge radii of potassium isotopes in the RMF (BCS)* approach

NUCLEAR STRUCTURE 37,38,39,40,41,42,43,44,45,46,47,48,49,50,51K; calculated odd-even staggerings of binding energies, and charge radii of potassium isotopes. Comparison with available data.

doi: 10.1088/1674-1137/ac4b5c
Citations: PlumX Metrics


2022AN16      Chin.Phys.C 46, 064101 (2022)

R.An, X.Jiang, L.-G.Cao, F.-S.Zhang

Evolution of nuclear charge radii in copper and indium isotopes

NUCLEAR STRUCTURE 57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81Cu, 99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139In; calculated rms charge radii using the relativistic mean field (RMF) model with NL3, PK1 and NL3* parameter sets. Comparison with experimental data.

doi: 10.1088/1674-1137/ac501a
Citations: PlumX Metrics


2022DO01      Phys.Rev. C 105, 014308 (2022)

X.-X.Dong, R.An, J.-X.Lu, L.-S.Geng

Novel Bayesian neural network based approach for nuclear charge radii

NUCLEAR STRUCTURE 34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55Ca, 32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55K; calculated charge radii by the Nerlo-Pomorska and Pomorski (NP) formula, D2 and D4 models, and compared with the experimental data; deduced strong odd-even staggerings. Novel approach combining a three-parameter formula and Bayesian neural network for charge radii.

doi: 10.1103/PhysRevC.105.014308
Citations: PlumX Metrics


2020AN13      Phys.Rev. C 102, 024307 (2020)

R.An, L.-S.Geng, S.-S.Zhang

Novel ansatz for charge radii in density functional theories

NUCLEAR STRUCTURE 16,17,18,19,20,21,22,23,24,25,26,27O, 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36Ne, 19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40Mg, 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54Ca, 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60Cr, 55,56,57,58,59,60,61,62,63,64,65,66,67,68Ni, 69,70,71,72,73,74,75,76,77,78,79,80,81,82Ge, 84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110Zr, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134Cd, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138Sn, 179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222Pb; calculated rms charge radii, odd-even staggering in the binding energies using the relativistic mean field model (RMF) with the pairing interaction treated by BCS method, and by adding a correction term, proportional to the number of Cooper pairs. Comparison to available experimental data, and with other theoretical calculations.

doi: 10.1103/PhysRevC.102.024307
Citations: PlumX Metrics


Back to query form