NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = N.Chamel

Found 55 matches.

Back to query form



2023AL16      Phys.Rev. C 108, 015801 (2023)

V.Allard, N.Chamel

Gapless superfluidity in neutron stars: Thermal properties

doi: 10.1103/PhysRevC.108.015801
Citations: PlumX Metrics


2023AL20      Phys.Rev. C 108, 045801 (2023)

V.Allard, N.Chamel

Gapless superfluidity in neutron stars: Normal-fluid fraction

doi: 10.1103/PhysRevC.108.045801
Citations: PlumX Metrics


2023GR08      Eur.Phys.J. A 59, 270 (2023)

G.Grams, W.Ryssens, G.Scamps, S.Goriely, N.Chamel

Skyrme-Hartree-Fock-Bogoliubov mass models on a 3D mesh: III. From atomic nuclei to neutron stars

doi: 10.1140/epja/s10050-023-01158-6
Citations: PlumX Metrics


2023SH20      Phys.Rev. C 108, 025805 (2023)

N.N.Shchechilin, N.Chamel, J.M.Pearson

Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. IV. Role of the symmetry energy in pasta phases

doi: 10.1103/PhysRevC.108.025805
Citations: PlumX Metrics


2022PE01      Phys.Rev. C 105, 015803 (2022)

J.M.Pearson, N.Chamel

Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. III. Inclusion of microscopic corrections to pasta phases

doi: 10.1103/PhysRevC.105.015803
Citations: PlumX Metrics


2021AL06      Phys.Rev. C 103, 025804 (2021)

V.Allard, N.Chamel

Entrainment effects in neutron-proton mixtures within the nuclear energy-density functional theory. II. Finite temperatures and arbitrary currents

doi: 10.1103/PhysRevC.103.025804
Citations: PlumX Metrics


2021PE04      Phys.Rev. C 103, 025801 (2021)

L.Perot, N.Chamel

Role of dense matter in tidal deformations of inspiralling neutron stars and in gravitational waveforms with unified equations of state

doi: 10.1103/PhysRevC.103.025801
Citations: PlumX Metrics


2021PE13      Phys.Rev. C 104, 055801 (2021)

D.Pecak, N.Chamel, P.Magierski, G.Wlazlowski

Properties of a quantum vortex in neutron matter at finite temperatures

doi: 10.1103/PhysRevC.104.055801
Citations: PlumX Metrics


2020CH13      Phys.Rev. C 101, 032801 (2020)

N.Chamel

Analytical determination of the structure of the outer crust of a cold nonaccreted neutron star

NUCLEAR STRUCTURE 56Fe, 62Ni; 62Ni, 64Ni; 64Ni, 66Ni; 66Ni, 86Kr; 86Kr, 84Se; 84Se, 82Ge; 82Ge, 80Zn; 80Zn, 78Ni; 78Ni, 126Ru; 126Ru, 124Mo; 124Mo, 122Zr; 122Zr, 120Sr; 120Sr, 122Sr; 122Sr, 124Sr; calculated composition, stratification, and location of adjacent pairs of nuclei within the structure of the outer crust of a cold, nonaccreted neutron star using accurate analytical formulas for the transition pressures between adjacent crustal layers and their densities, recent experimental data, and nuclear mass model HFB-27. Relevance to large-scale statistical studies and sensitivity analyses.

doi: 10.1103/PhysRevC.101.032801
Citations: PlumX Metrics


2020CH20      Phys.Rev. C 101, 065802 (2020)

N.Chamel, Zh.K.Stoyanov

Analytical determination of the structure of the outer crust of a cold nonaccreted neutron star: Extension to strongly quantizing magnetic fields

doi: 10.1103/PhysRevC.101.065802
Citations: PlumX Metrics


2020CH24      Phys.Rev. C 102, 015804 (2020)

N.Chamel, A.F.Fantina, J.L.Zdunik, P.Haensel

Experimental constraints on shallow heating in accreting neutron-star crusts

NUCLEAR REACTIONS 12C(12C, X)24Ne*,16O(16O, X)32Si*, E not given; calculated maximum possible heat released from electron captures and pycnonuclear fusion reactions triggered by the burial of x-ray burst ashes of pure 56Fe or 106Pd, and released heat deposited in the outer crust of accreting neutron star crusts.

doi: 10.1103/PhysRevC.102.015804
Citations: PlumX Metrics


2020PE01      Phys.Rev. C 101, 015802 (2020)

J.M.Pearson, N.Chamel, A.Y.Potekhin

Unified equations of state for cold nonaccreting neutron stars with Brussels-Montreal functionals. II. Pasta phases in semiclassical approximation

doi: 10.1103/PhysRevC.101.015802
Citations: PlumX Metrics


2020PE02      Phys.Rev. C 101, 015806 (2020)

L.Perot, N.Chamel, A.Sourie

Role of the crust in the tidal deformability of a neutron star within a unified treatment of dense matter

doi: 10.1103/PhysRevC.101.015806
Citations: PlumX Metrics


2019CH52      Phys.Rev. C 100, 065801 (2019)

N.Chamel, V.Allard

Entrainment effects in neutron-proton mixtures within the nuclear energy-density functional theory: Low-temperature limit

doi: 10.1103/PhysRevC.100.065801
Citations: PlumX Metrics


2019MU10      Phys.Rev. C 99, 055805 (2019)

Y.D.Mutafchieva, N.Chamel, Zh.K.Stoyanov, J.M.Pearson, L.M.Mihailov

Role of Landau-Rabi quantization of electron motion on the crust of magnetars within the nuclear energy density functional theory

doi: 10.1103/PhysRevC.99.055805
Citations: PlumX Metrics


2019PE17      Phys.Rev. C 100, 035801 (2019)

L.Perot, N.Chamel, A.Sourie

Role of the symmetry energy and the neutron-matter stiffness on the tidal deformability of a neutron star with unified equations of state

doi: 10.1103/PhysRevC.100.035801
Citations: PlumX Metrics


2016CH53      Phys.Rev. C 94, 065802 (2016)

N.Chamel, A.F.Fantina

Binary and ternary ionic compounds in the outer crust of a cold nonaccreting neutron star

NUCLEAR STRUCTURE 56,58Fe, 62,64,68,78,80Ni, 80Zn, 82Ge, 84Se, 86Kr, 120,122,124Sr, 121Y, 122Zr, 124Mo; 56Fe+62Ni, 62Ni+58Fe, 58Fe+64Ni, 66Ni+86Kr, 86Kr+84Se, 84Se+82Ge, 82Ge+80Zn, 80Zn+78Ni, 80Ni+124Mo, 124Mo+122Zr, 122Zr+121Y, and 121Y+120Sr; calculated mean baryon number densities, transition pressures, and threshold electron Fermi energies for pure body-centered cubic crystals, and binary compounds with simple cubic structure in the outer crust of a cold nonaccreting neutron star, using atomic masses from AME-2012 supplemented with the Brussels-Montreal nuclear mass model HFB-24.

doi: 10.1103/PhysRevC.94.065802
Citations: PlumX Metrics


2016FA02      Phys.Rev. C 93, 015801 (2016)

A.F.Fantina, N.Chamel, Y.D.Mutafchieva, Zh.K.Stoyanov, L.M.Mihailov, and R.L.Pavlov

Role of the symmetry energy on the neutron-drip transition in accreting and nonaccreting neutron stars

ATOMIC MASSES 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126Kr, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130Sr; analyzed difference in mass predictions for two pairs of Brussels-Montreal nuclear mass models. 122Kr, 122,124,126,128Sr; calculated baryon density, and corresponding pressure for neutron-drip transition in the crust of nonaccreting magnetized neutron stars. 60,64Ca, 66,68Ti, 76Cr, 103Ga, 98,104Ge, 105As, 106Se; calculated number of emitted neutrons, baryon density and corresponding pressure, S(n), neutron dip threshold. Role of symmetry energy on neutron-drip transition in accreting and nonaccreting neutron-star crusts. Microscopic nuclear mass models, from HFB-22 to HFB-25, developed by the Brussels-Montreal collaboration.

doi: 10.1103/PhysRevC.93.015801
Citations: PlumX Metrics


2016GO10      Phys.Rev. C 93, 034337 (2016)

S.Goriely, N.Chamel, J.M.Pearson

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XVI. Inclusion of self-energy effects in pairing

ATOMIC MASSES N=8-240; calculated masses for 6884 nuclei using new family of three Hartree-Fock-Bogoliubov (HFB) mass models HFB-30, HFB-31, and HFB-32, and respective interactions, BSk30, BSk31, and BSk32, respectively. New feature of a purely phenomenological pairing term that depends on the density gradient. Best fit to the database of 2353 experimental nuclear masses from AME-2012, and to rms charge-radius data. Relevance to neutron superfluidity in the inner crust of neutron stars.

doi: 10.1103/PhysRevC.93.034337
Citations: PlumX Metrics


2016PE20      Eur.Phys.J. A 52, 320 (2016)

D.Pena Arteaga, S.Goriely, N.Chamel

Relativistic mean-field mass models

NUCLEAR STRUCTURE 1n, 1H; calculated effective mass, mass excess vs nucleon density in neutron matter. Compared with DBHF calculations of Roca-Maza. Z≈6-100; calculated mass, mass excess, charge radii, isotopic shift, deformed nuclei moments of inertia. Relativistic mean-field mass model with density-dependent meson couplings and two interactions fitted to experimental data. Compared with available data.

doi: 10.1140/epja/i2016-16320-x
Citations: PlumX Metrics


2015CH21      Acta Phys.Pol. B46, 349 (2015)

N.Chamel, J.M.Pearson, A.F.Fantina, C.Ducoin, S.Goriely, A.Pastore

Brussels-Montreal Nuclear Energy Density Functionals, from Atomic Masses to Neutron Stars

doi: 10.5506/APhysPolB.46.349
Citations: PlumX Metrics


2015CH35      Phys.Rev. C 91, 055803 (2015)

N.Chamel, A.F.Fantina, J.L.Zdunik, P.Haensel

Neutron drip transition in accreting and nonaccreting neutron star crusts

NUCLEAR STRUCTURE 56Ar, 60,64Ca, 66,68Ti, 76Cr, 98,104,106Ge, 105As, 106Se, 121,124,126Sr; calculated neutron drip transition in the dense matter between the outer and inner crusts of accreting neutron stars using three different microscopic Hartree-Fock-Bogoliubov (HFB) nuclear mass models.

doi: 10.1103/PhysRevC.91.055803
Citations: PlumX Metrics


2015CH38      Phys.Rev. C 91, 065801 (2015)

N.Chamel, Zh.K.Stoyanov, L.M.Mihailov, Y.D.Mutafchieva, R.L.Pavlov, Ch.J.Velchev

Role of Landau quantization on the neutron-drip transition in magnetar crusts

doi: 10.1103/PhysRevC.91.065801
Citations: PlumX Metrics


2015PE02      Phys.Rev. C 91, 018801 (2015)

J.M.Pearson, N.Chamel, A.Pastore, S.Goriely

Role of proton pairing in a semimicroscopic treatment of the inner crust of neutron stars

doi: 10.1103/PhysRevC.91.018801
Citations: PlumX Metrics


2014PA42      Phys.Rev. C 90, 025804 (2014)

A.Pastore, M.Martini, D.Davesne, J.Navarro, S.Goriely, N.Chamel

Linear response theory and neutrino mean free path using Brussels-Montreal Skyrme functionals

doi: 10.1103/PhysRevC.90.025804
Citations: PlumX Metrics


2014PE04      Eur.Phys.J. A 50, 43 (2014)

J.M.Pearson, N.Chamel, A.F.Fantina, S.Goriely

Symmetry energy: nuclear masses and neutron stars

NUCLEAR STRUCTURE Z=10-110; calculated neutron drip line, mass excess, 2n separation energy using HFB nuclear mass models with generalized Skyrme forces.

doi: 10.1140/epja/i2014-14043-8
Citations: PlumX Metrics


2013CH18      Phys.Rev. C 87, 035803 (2013)

N.Chamel, D.Page, S.Reddy

Low-energy collective excitations in the neutron star inner crust

doi: 10.1103/PhysRevC.87.035803
Citations: PlumX Metrics


2013CH35      Int.J.Mod.Phys. E22, 1330018 (2013); Erratum Int.J.Mod.Phys. E22, 1392004 (2013)

N.Chamel, P.Haensel, J.L.Zdunik, A.F.Fantina

On the maximum mass of neutron stars

doi: 10.1142/S021830131330018X
Citations: PlumX Metrics


2013GO11      Phys.Rev. C 88, 024308 (2013)

S.Goriely, N.Chamel, J.M.Pearson

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XIII. The 2012 atomic mass evaluation and the symmetry coefficient

ATOMIC MASSES Z=8-110, N=8-250; calculated masses of 8509 nuclei using five Hartree-Fock-Bogoliubov (HFB) mass models using unconventional Skyrme forces; fitted to the evaluated masses in AME-2012; deduced rms deviations from AME-2012 data, symmetry coefficients, charge radii, neutron skin thickness, shell gaps for Z=50, 82, N=28, 50, 82, 126 nuclei. Comparison with experimental data. Relevance of the mass models to a unified treatment of outer and inner crusts and cores of neutron stars.

doi: 10.1103/PhysRevC.88.024308
Citations: PlumX Metrics


2013GO18      Phys.Rev. C 88, 061302 (2013)

S.Goriely, N.Chamel, J.M.Pearson

Hartree-Fock-Bogoliubov nuclear mass model with 0.50 MeV accuracy based on standard forms of Skyrme and pairing functionals

ATOMIC MASSES Z>7, N>7; calculated masses for 2353 nuclei using Hartree-Fock-Bogoliubov nuclear mass model with Skyrme force BSk27*, and the pairing parameters. Comparison with evaluated mass data in AME-12.

doi: 10.1103/PhysRevC.88.061302
Citations: PlumX Metrics


2013WO06      Phys.Rev.Lett. 110, 041101 (2013)

R.N.Wolf, D.Beck, K.Blaum, Ch.Bohm, Ch.Borgmann, M.Breitenfeldt, N.Chamel, S.Goriely, F.Herfurth, M.Kowalska, S.Kreim, D.Lunney, V.Manea, E.Minaya Ramirez, S.Naimi, D.Neidherr, M.Rosenbusch, L.Schweikhard, J.Stanja, F.Wienholtz, K.Zuber

Plumbing Neutron Stars to New Depths with the Binding Energy of the Exotic Nuclide 82Zn

ATOMIC MASSES 82Zn; measured time-of-flight resonance, mean frequency ratio; deduced mass. ISOLTRAP setup at the ISOLDE-CERN facility.

doi: 10.1103/PhysRevLett.110.041101
Citations: PlumX Metrics


2012CH13      Phys.Rev. C 85, 035801 (2012); Pub.Note Phys.Rev. C 85, 039902 (2012)

N.Chamel

Neutron conduction in the inner crust of a neutron star in the framework of the band theory of solids

doi: 10.1103/PhysRevC.85.035801
Citations: PlumX Metrics


2012CH45      Phys.Rev. C 86, 055804 (2012)

N.Chamel, R.L.Pavlov, L.M.Mihailov, Ch.J.Velchev, Zh.K.Stoyanov, Y.D.Mutafchieva, M.D.Ivanovich, J.M.Pearson, S.Goriely

Properties of the outer crust of strongly magnetized neutron stars from Hartree-Fock-Bogoliubov atomic mass models

doi: 10.1103/PhysRevC.86.055804
Citations: PlumX Metrics


2012PE09      Phys.Rev. C 85, 065803 (2012)

J.M.Pearson, N.Chamel, S.Goriely, C.Ducoin

Inner crust of neutron stars with mass-fitted Skyrme functionals

doi: 10.1103/PhysRevC.85.065803
Citations: PlumX Metrics


2011CH61      Phys.Rev. C 84, 062802 (2011)

N.Chamel, A.F.Fantina, J.M.Pearson, S.Goriely

Masses of neutron stars and nuclei

doi: 10.1103/PhysRevC.84.062802
Citations: PlumX Metrics


2011GO36      J.Korean Phys.Soc. 59, 2100s (2011)

S.Goriely, N.Chamel, J.M.Pearson

HFB Mass Models for Nucleosynthesis Applications

COMPILATION Z≈8-120; calculated Q, mass surfaces using various NN forces, neutron capture rates, abundances.

doi: 10.3938/jkps.59.2100
Citations: PlumX Metrics


2011PE16      Phys.Rev. C 83, 065810 (2011)

J.M.Pearson, S.Goriely, N.Chamel

Properties of the outer crust of neutron stars from Hartree-Fock-Bogoliubov mass models

doi: 10.1103/PhysRevC.83.065810
Citations: PlumX Metrics


2010CH11      Phys.Rev. C 81, 045804 (2010)

N.Chamel, S.Goriely, J.M.Pearson, M.Onsi

Unified description of neutron superfluidity in the neutron-star crust with analogy to anisotropic multiband BCS superconductors

doi: 10.1103/PhysRevC.81.045804
Citations: PlumX Metrics


2010CH24      Phys.Rev. C 82, 014313 (2010)

N.Chamel

Effective contact pairing forces from realistic calculations in infinite homogeneous nuclear matter

doi: 10.1103/PhysRevC.82.014313
Citations: PlumX Metrics


2010CH45      Phys.Rev. C 82, 045804 (2010)

N.Chamel, S.Goriely

Spin and spin-isospin instabilities in asymmetric nuclear matter at zero and finite temperatures using Skyrme functionals

NUCLEAR STRUCTURE Z=8-110, N=8-250; calculated differences between the HFB energies for two Skyrme forces SkI2 and BSk17, critical densities and Landau parameters in neutron matter. Discussed spin and spin-isospin instabilities at zero and finite temperatures for nuclear matter at densities in neutron stars and supernova cores.

doi: 10.1103/PhysRevC.82.045804
Citations: PlumX Metrics


2010CH53      Phys.Rev. C 82, 061307 (2010)

N.Chamel

Self-interaction errors in nuclear energy density functionals

doi: 10.1103/PhysRevC.82.061307
Citations: PlumX Metrics


2010GO23      Phys.Rev. C 82, 035804 (2010)

S.Goriely, N.Chamel, J.M.Pearson

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XII. Stiffness and stability of neutron-star matter

ATOMIC MASSES Z=8-110, N=8-250; calculated masses for 8509 nuclei using three new Hartree-Fock-Bogoliubov (HFB) mass models, HFB-19, HFB-20, and HFB-21 with unconventional Skyrme forces. 208Pb; calculated isoscalar and isovector effective masses as a function of the radial position, and single-particle proton levels.

doi: 10.1103/PhysRevC.82.035804
Citations: PlumX Metrics


2010PE10      Phys.Rev. C 82, 037301 (2010)

J.M.Pearson, N.Chamel, S.Goriely

Breathing-mode measurements in Sn isotopes and isospin dependence of nuclear incompressibility

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sn; analyzed energies of breathing mode isoscalar giant-monopole resonances (GMR) using a higher-order leptodermous expansion; deduced symmetry-incompressibility coefficient Kτ. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.037301
Citations: PlumX Metrics


2009CH03      Phys.Rev. C 79, 012801 (2009)

N.Chamel, J.Margueron, E.Khan

Neutron specific heat in the crust of neutron stars from the nuclear band theory

NUCLEAR STRUCTURE Z=40, N=160, 210, 280; calculated neutron-specific heat using band theory of solids with Skyrme nucleon-nucleon interaction.

doi: 10.1103/PhysRevC.79.012801
Citations: PlumX Metrics


2009CH63      Phys.Rev. C 80, 065804 (2009)

N.Chamel, S.Goriely, J.M.Pearson

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. XI. Stabilizing neutron stars against a ferromagnetic collapse

doi: 10.1103/PhysRevC.80.065804
Citations: PlumX Metrics


2009GO11      Phys.Rev.Lett. 102, 152503 (2009)

S.Goriely, N.Chamel, J.M.Pearson

Skyrme-Hartree-Fock-Bogoliubov Nuclear Mass Formulas: Crossing the 0.6 MeV Accuracy Threshold with Microscopically Deduced Pairing

doi: 10.1103/PhysRevLett.102.152503
Citations: PlumX Metrics


2009GO41      Eur.Phys.J. A 42, 547 (2009)

S.Goriely, N.Chamel, J.M.Pearson

Recent breakthroughs in Skyrme-Hartree-Fock-Bogoliubov mass formulas

ATOMIC MASSES Z=8-110; calculated atomic masses. Comparison with data.

doi: 10.1140/epja/i2009-10784-7
Citations: PlumX Metrics


2008CH24      Nucl.Phys. A812, 72 (2008)

N.Chamel, S.Goriely, J.M.Pearson

Further explorations of Skyrme-Hartree-Fock-Bogoliubov mass formulas. IX: Constraint of pairing force to 1S0 neutron-matter gap

NUCLEAR STRUCTURE Z=8-110; calculated S(n), Q(β), charge radii. Global fit to 2149 mass data. Compared Skyrme-Hartree-Fock-Bogoliubov mass models when constraining the contact pairing force.

doi: 10.1016/j.nuclphysa.2008.08.015
Citations: PlumX Metrics


2008ON01      Phys.Rev. C 77, 065805 (2008), Publishers note Phys.Rev. C 78, 059902 (2008)

M.Onsi, A.K.Dutta, H.Chatri, S.Goriely, N.Chamel, J.M.Pearson

Semi-classical equation of state and specific-heat expressions with proton shell corrections for the inner crust of a neutron star

doi: 10.1103/PhysRevC.77.065805
Citations: PlumX Metrics


2007CH44      Phys.Rev. C 75, 055806 (2007)

N.Chamel, S.Naimi, E.Khan, J.Margueron

Validity of the Wigner-Seitz approximation in neutron star crust

doi: 10.1103/PhysRevC.75.055806
Citations: PlumX Metrics


2006CH19      Phys.Rev. C 73, 045802 (2006)

N.Chamel, P.Haensel

Entrainment parameters in a cold superfluid neutron star core

doi: 10.1103/PhysRevC.73.045802
Citations: PlumX Metrics


2006CH33      Nucl.Phys. A773, 263 (2006)

N.Chamel

Effective mass of free neutrons in neutron star crust

doi: 10.1016/j.nuclphysa.2006.04.010
Citations: PlumX Metrics


2005CA05      Nucl.Phys. A748, 675 (2005)

B.Carter, N.Chamel, P.Haensel

Entrainment coefficient and effective mass for conduction neutrons in neutron star crust: simple microscopic models

doi: 10.1016/j.nuclphysa.2004.11.006
Citations: PlumX Metrics


2005CA36      Nucl.Phys. A759, 441 (2005)

B.Carter, N.Chamel, P.Haensel

Effect of BCS pairing on entrainment in neutron superfluid current in neutron star crust

doi: 10.1016/j.nuclphysa.2005.05.151
Citations: PlumX Metrics


2005CH01      Nucl.Phys. A747, 109 (2005)

N.Chamel

Band structure effects for dripped neutrons in neutron star crust

doi: 10.1016/j.nuclphysa.2004.09.011
Citations: PlumX Metrics


Back to query form