NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 3, 2024.

Search: Author = M.Toyokawa

Found 8 matches.

Back to query form



2019OG02      Prog.Theor.Exp.Phys. 2019, 123D04 (2019)

S.Ogawa, R.Horinouchi, M.Toyokawa, T.Matsumoto

Microscopic optical potentials including breakup effects for elastic scattering

NUCLEAR REACTIONS 12C(d, d), E=20, 40, 80 MeV; 208Pb(d, d), E=40 MeV; calculated differential σ as the ratio to Rutherford cross section depending on transfer momentum q for d scattering.

doi: 10.1093/ptep/ptz128
Citations: PlumX Metrics


2016YA05      Phys.Rev. C 93, 064609 (2016)

M.Yahiro, S.Watanabe, M.Toyokawa, T.Matsumoto

Proposal of a directly measurable parameter quantifying the halo nature of one-neutron nuclei

NUCLEAR REACTIONS 12C(p, X), (15C, X), (31Ne, X), E<1000 MeV; analyzed reaction σ(E) data to determine halo parameters. 11Be, 12,15,17,19C, 31Ne, 37Mg; deduced halo parameters. Calculations based on the eikonal+adiabatic approximation using Glauber formula.

doi: 10.1103/PhysRevC.93.064609
Citations: PlumX Metrics


2015TO08      Phys.Rev. C 91, 064610 (2015)

M.Toyokawa, T.Matsumoto, K.Minomo, M.Yahiro

Microscopic approach to 3He scattering

NUCLEAR REACTIONS 58Ni, 208Pb(3He, 3He), E=30-150 MeV/nucleon; calculated differential and total reaction σ(E, θ), microscopic optical potentials; deduced projectile-breakup and spin-orbit force effects. Double single-folding (DSF) and double-folding with frozen-density approximation (DF-FDA) models by folding the Melbourne g matrix with the target density and localizing the resultant nonlocal folding potential with the Brieva-Rook method. Comparison with experimental data.

doi: 10.1103/PhysRevC.91.064610
Citations: PlumX Metrics


2015TO12      Phys.Rev. C 92, 024618 (2015), Erratum Phys.Rev. C 96, 059905 (2017)

M.Toyokawa, M.Yahiro, Ta.Matsumoto, Ko.Minomo, K.Ogata, M.Kohno

Microscopic calculations based on chiral two- and three-nucleon forces for proton- and 4He-nucleus scattering

NUCLEAR REACTIONS 40Ca, 58Ni, 208Pb(p, p'), E=65 MeV; 58Ni, 208Pb(α, α'), E=72 MeV; calculated differential σ(θ) using standard Brueckner-Hartree-Fock (BHF) method and the g-matrix folding model, the g matrix evaluated from chiral two-nucleon force (2NF) of N3LO and chiral three-nucleon force (3NF) of NNLO; deduced effects of chiral three-nucleon force (3NF) on proton and α scattering. Comparison with experimental data.

doi: 10.1103/PhysRevC.92.024618
Citations: PlumX Metrics


2015TO18      J.Phys.(London) G42, 025104 (2015); Corrigenda J.Phys.(London) G44, 079502 (2017)

M.Toyokawa, K.Minomo, M.Kohno, M.Yahiro

Roles of chiral three-nucleon forces in nucleon-nucleus scattering

NUCLEAR REACTIONS 12C, 16O, 24Mg, 40Ca, 58Ni, 90Zr, 208Pb(p, p), E=65 MeV; calculated σ(θ), vector analyzing powers. Comparison with experimental data.

doi: 10.1088/0954-3899/42/2/025104
Citations: PlumX Metrics


2014EG01      Phys.Rev. C 89, 064611 (2014)

K.Egashira, K.Minomo, M.Toyokawa, T.Matsumoto, M.Yahiro

Microscopic optical potentials for 4He scattering

NUCLEAR REACTIONS 58Ni(α, α), (α, X), E=20.5, 26, 43.12, 60, 72, 85, 96.5, 120, 174.75 MeV/nucleon; analyzed experimental differential cross section data as a function of transfer momentum, total reaction σ(E), R dependence of absolute elastic S-matrix element; deduced optical potentials. 208Pb(α, α), E=26, 34.75, 72, 85, 96.5, 120, 174.75 MeV/nucleon; analyzed experimental differential cross section data as a function of transfer momentum. Calculations performed using double-folding model with the target-density approximation (DF-TDA), frozen-density approximation (DF-FDA), and conventional nucleon-nucleus folding (NAF) model.

doi: 10.1103/PhysRevC.89.064611
Citations: PlumX Metrics


2014MI22      Phys.Rev. C 90, 051601 (2014), Erratum Phys.Rev. C 96, 059904 (2017)

K.Minomo, M.Toyokawa, M.Kohno, M.Yahiro

Effects of a chiral three-nucleon force on nucleus-nucleus scattering

NUCLEAR REACTIONS 12C(12C, 12C), E=85 MeV/nucleon; 16C(16C, 16C), E=70 MeV/nucleon; calculated folding potential, differential σ(θ); deduced effects of next-to-next-to leading order (NNLO) chiral three-nucleon force (3NF). Brueckner-Hartree-Fock method and the g-matrix folding model. Comparison with experimental data.

doi: 10.1103/PhysRevC.90.051601
Citations: PlumX Metrics


2013TO16      Phys.Rev. C 88, 054602 (2013)

M.Toyokawa, K.Minomo, M.Yahiro

Mass-number and isotope dependence of local microscopic optical potentials for polarized proton scattering

NUCLEAR REACTIONS 4He, 40Ca, 208Pb(polarized p, p), E=65, 200 MeV; 6He(polarized p, p), E=71, 200 MeV; calculated σ(θ) and vector analyzing powers. 4He(p, X), E=47.9 MeV; 12C, 16O, 40Ca, 208Pb(p, X), E=65.5 MeV; 20Ne(p, X), E=47.0 MeV; 24Mg(p, X), E=48.0 MeV; 90Zr(p, X), E=60.8 MeV; calculated reaction σ. 20,21,22,23,24,25,26,27,28,29,30,31,32Ne(p, X), E=65 MeV; calculated reaction σ, mass dependence of volume integral and rms radius. 22Ne(p, p'), E=35 MeV; 30Ne(p, p'), 31Ne(p, p), E=65 MeV; calculated σ(θ). 22Ne(p, n)22F, E=35 MeV; analyzed charge exchange reaction to IAS. Investigated systematic properties of the microscopic optical potentials obtained with Melbourne g-matrix NN interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.88.054602
Citations: PlumX Metrics


Back to query form