NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of April 27, 2024.

Search: Author = K.Massen-Hane

Found 3 matches.

Back to query form



2017FR05      Phys.Rev. C 96, 014619 (2017)

P.R.Fraser, K.Massen-Hane, A.S.Kadyrov, K.Amos, I.Bray, L.Canton

Effective two-body model for spectra of clusters of 2H, 3H, 3He and 4He with 4He, and 2H - 4He scattering

NUCLEAR REACTIONS 4He(t, X)7Li, 4He(3He, X)7Be, 4He(α, X)8Be, 4He(d, X)6Li; calculated low-energy spectra of 6Li, 7Li, 7Be and 8Be, considering 7Li as cluster of 4He with 3H, 7Be as cluster of 4He with 3He, 8Be as cluster of 4He with 4He, and 6Li as cluster of 4He with 2H. 4He(d, d), E=0.6-11 MeV; calculated σ(E, θ). Comparison with experimental data. Solution of single-channel Lippmann-Schwinger equations.

doi: 10.1103/PhysRevC.96.014619
Citations: PlumX Metrics


2016FR07      J.Phys.(London) G43, 095104 (2016)

P.R.Fraser, A.S.Kadyrov, K.Massen-Hane, K.Amos, L.Canton, S.Karataglidis, D.van der Knijff, I.Bray

Structure of 23Al from a multi-channel algebraic scattering model based on mirror symmetry

NUCLEAR REACTIONS 22Mg(p, X)23Al, E(cm)<4 MeV; calculated σ(θ). Comparison with experimental data.

NUCLEAR STRUCTURE 23Al; calculated energy levels, J, π. Comparison with experimental data.

doi: 10.1088/0954-3899/43/9/095104
Citations: PlumX Metrics


2016FR09      Phys.Rev. C 94, 034603 (2016)

P.R.Fraser, K.Massen-Hane, K.Amos, I.Bray, L.Canton, R.Fossion, A.S.Kadyrov, S.Karataglidis, J.P.Svenne, D.van der Knijff

Importance of resonance widths in low-energy scattering of weakly bound light-mass nuclei

NUCLEAR STRUCTURE 9Be; calculated levels, resonances J, π, widths of a compound nucleus with 8Be+n cluster by solving the Lippmann-Schwinger equations in momentum space. Comparison with multichannel algebraic scattering (MCAS) calculations with target states.

NUCLEAR REACTIONS 8Be(n, n), E<5.5 MeV; 12C(n, n), (n, X), E<6.5 MeV; calculated elastic and reaction σ(E) coupled to first 0+, 2+ and 4+ states in 8Be, reaction σ with particle emission widths of 12C coupled to g.s., first 2+ and first excited 0+ states in 12C; deduced effect of particle-emitting resonances on the scattering cross section. Method involved choosing an appropriate target-state resonance shape, modifying a Lorentzian by use of widths dependent on projectile energy, with a correction to target-state centroid energy.

doi: 10.1103/PhysRevC.94.034603
Citations: PlumX Metrics


Back to query form