NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 2, 2024.

Search: Author = H.Pasca

Found 18 matches.

Back to query form



2024PA17      Phys.Rev. C 109, 044601 (2024)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Excitation-energy dependence of fission-fragment neutron multiplicity in the improved scission-point model

doi: 10.1103/PhysRevC.109.044601
Citations: PlumX Metrics


2023PA05      Phys.Rev. C 107, 024603 (2023)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Excitation-energy dependence of the fission-fragment neutron-excess ratio

RADIOACTIVITY 250Cf(SF); calculated charge and total kinetic energy distributions resulting from fission of 250Cf excited to 46 MeV energy, average number of neutron per one fission fragment. 250Cf, 240Pu(SF); calculated neutron-excess ratio in fragments. Calculation in the framework of scission-point model, where the scission configurations are dinuclear systems with two touching individual nuclei (fragments). Comparison to experimental data on fission of 240Pu [from 12C(238U, 10Be), E*=9 MeV] and 250Cf [from 12C(238U, X), E*=46 MeV].

NUCLEAR REACTIONS 239Pu(n, F), E=0.5 MeV; calculated primary mass distribution, average number of neutrons emitted by one of the fragments. 12C(238U, X)238U*, E*=7.4 MeV; 12C(238U, X)240Pu*, E*=10.7 MeV; 12C(238U, X)244Cm*, E*=23 MeV; 12C(238U, X)250Cf*, E*=46 MeV; calculated neutron-excess ratio in fission fragments, fission fragments charge distribution. Comparison to experimental data.

doi: 10.1103/PhysRevC.107.024603
Citations: PlumX Metrics


2023PA21      Phys.Rev. C 108, 014613 (2023)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Influence of the transition from symmetric to asymmetric fission mode on the average total kinetic energy and neutron multiplicity

NUCLEAR REACTIONS 235U(n, F), E=thermal;239Pu(n, F), E=0.5 MeV;222,224,226,228,230Th(γ, F), E*=11 MeV; calculated average numbers of neutrons emitted per fission event, neutron multiplicities, charge and mass distributions of fission fragments, average total kinetic energies. Comparison to experimental data.

RADIOACTIVITY 230Th, 236U, 244,252Cf, 240Pu(SF); calculated average numbers of neutrons emitted per fission event, neutron multiplicities, charge and mass distributions of fission fragments, average total kinetic energies. Comparison to experimental data.

NUCLEAR STRUCTURE 236U; calculated potential energy surface for the binary fragmentation.

doi: 10.1103/PhysRevC.108.014613
Citations: PlumX Metrics


2023PA43      Int.J.Mod.Phys. E32, 2340005 (2023)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Fission within dinuclear system approach

NUCLEAR STRUCTURE 180,182Hg, 190Hg, 198Hg, 250,251,252,253,254,255,256,257,258Fm, 250,251,252,253,254,255,256,257,258No, Pb, Rn, Th, U, Cf; calculated fission properties with the improved scission-point statistical model based on the dinuclear system approach.

doi: 10.1142/S0218301323400050
Citations: PlumX Metrics


2021PA27      Phys.Rev. C 104, 014604 (2021)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Simultaneous description of charge, mass, total kinetic energy, and neutron multiplicity distributions in fission of Th and U isotopes

NUCLEAR REACTIONS 222,226,230Th, 230,234U(γ, F), E*=11 MeV; calculated charge, mass, total kinetic energy (TKE), and neutron multiplicity distributions of fission fragments, and correlations between these parameters using the improved scission-point model in the general framework of dinuclear system (DNS) model; deduced influence of transition from symmetric to asymmetric fission mode. Comparison with experimental data.

doi: 10.1103/PhysRevC.104.014604
Citations: PlumX Metrics


2020PA22      Phys.Rev. C 101, 064604 (2020)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Examination of coexistence of symmetric mass and asymmetric charge distributions of fission fragments

NUCLEAR REACTIONS 144Sm(36Ar, F)180Hg*, E*=33.4, 48, 65.8 MeV; 142Nd(40Ca, F)182Hg*, E*=33, 58, 75 MeV; 154Sm(36Ar, F)190Hg*, E*=56, 62.4, 70.5 MeV; 194Pt(α, F)198Hg*, E*=49 MeV; 154Sm(48Ca, F)202Pb*, E*=49, 57, 95 MeV; calculated mass and charge distributions, potential energies and deformations of fission fragments from fission of compound nuclei in excited states using the improved scission-point model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.101.064604
Citations: PlumX Metrics


2019PA36      Phys.Rev. C 99, 064611 (2019)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Change of the shape of mass and charge distributions in fission of Cf isotopes with excitation energy

RADIOACTIVITY 250,252,254,256Cf(SF); calculated fission fragment mass and charge distributions using the improved scission-point model. Comparison with experimental data.

NUCLEAR REACTIONS 249Cf(n, F), E=thermal; 248,250,252,254,256Cf; induced fission at excitation energies of 0, 15, 25, 35, 45, 46, 55, 65 MeV; calculated fission fragment mass and charge distributions, scission configurations, average light fragment mass and charge, and peak to valley ratio of fission fragment mass and charge distributions. Statistical scission-point fission model.

doi: 10.1103/PhysRevC.99.064611
Citations: PlumX Metrics


2018PA01      Nucl.Phys. A969, 226 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Transitions between symmetric and asymmetric modes in the region of heavy actinides

RADIOACTIVITY 242,244,246,248,250,250,252,254,256Cf, 250,252,254,256Fm, 250,252,254No(SF); calculated fragment mass distributions, fragment charge distribution. Compared with available data. Scission point fission model.

doi: 10.1016/j.nuclphysa.2017.10.001
Citations: PlumX Metrics


2018PA14      Phys.Rev. C 97, 034621 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Charge distributions of fission fragments of low- and high-energy fission of Fm, No, and Rf isotopes

RADIOACTIVITY 254,256,258,260,264Fm, 258,260,262,264No, 262,264,266Rf(SF); calculated mass and charge distribution of fission fragments using statistical scission-point fission model. Comparison with available experimental data.

NUCLEAR REACTIONS 254,256,258,260,264Fm(n, F), E=thermal; calculated mass and charge distribution of fission fragments. 254,256,258,260,264Fm; induced fission at excitation energies of 15, 25, 35, 50 MeV; 258,260,262,264No; induced fission at excitation energies of 25, 50 MeV; 262,264,266Rf; induced fission at excitation energies of 20, 50 MeV; calculated mass and charge distribution of fission fragments. Statistical scission-point fission model. Comparison with available experimental data.

doi: 10.1103/PhysRevC.97.034621
Citations: PlumX Metrics


2018PA25      Phys.Rev. C 98, 014624 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko, D.Lacroix

Toward an understanding of the anomaly in charge yield of Mo and Sn fragments in the fission reaction 238U (n, f)

NUCLEAR REACTIONS 238U(n, F), E=1.5, 1.97, 2.7 MeV; calculated yields of fission fragments with Z=30-62 using improved scission-point model. Comparison with experimental data, and with GEF theoretical predictions. Discussed possible explanation for anomaly in charge yields of Mo and Sn fragments.

doi: 10.1103/PhysRevC.98.014624
Citations: PlumX Metrics


2018PA32      Eur.Phys.J. A 54, 104 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Suggestion for examination of a role of multi-chance fission

NUCLEAR REACTIONS 238U(n, F), E=32.8, 45.3, 59.9 MeV; calculated fragment mass distribution without employing multi-chance fission assumption. Compared to data.

RADIOACTIVITY 218,220,222,224,226,228Th, 240U, 244Pu(SF); calculated (excited nuclei, E*=15-60 MeV) fission fragments charge, mass distribution without employing multi-chance fission assumption. Compared to data. 240U(SF); calculated (excited nucleus, E*=55 MeV) fission fragments charge, mass distribution considering multi-chance fission assumption. Compared to data.

doi: 10.1140/epja/i2018-12545-y
Citations: PlumX Metrics


2018PA35      Nucl.Phys. A977, 1 (2018)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Induced fission modes of Fermium and Nobelium isotopes

NUCLEAR REACTIONS 254,256,258,260Fm(n, f), E=thermal, E*=15 MeV;254,256,258,260Fm260(SF);262,264No(n, f), E=thermal, E*=25, 50 MeV;262,264No(SF); calculated mass distribution using spontaneous and thermal-neutron-induce fission model. Compared with available data.

doi: 10.1016/j.nuclphysa.2018.05.008
Citations: PlumX Metrics


2018PA50      Nucl.Phys. A980, 143 (2018)

H.Pasca, Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko

Influence of the entrance channel on spins of complex fragments in binary reactions

doi: 10.1016/j.nuclphysa.2018.10.060
Citations: PlumX Metrics


2017PA05      Acta Phys.Pol. B48, 431 (2017)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Physical Origin of the Transition from Symmetric to Asymmetric Fission Fragment Charge Distribution

NUCLEAR REACTIONS 204,206,208Rn, 210,212,214,216,218Ra, 218,220,222,224,226,228Th, 230,232,234U(γ, f), E*≈11 MeV; calculated fission charge yields using improved scission-point model. Compared with available data.

doi: 10.5506/APhysPolB.48.431
Citations: PlumX Metrics


2017PA37      Phys.Rev. C 96, 044611 (2017)

H.Pasca, Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko

Spins of complex fragments in binary reactions within a dinuclear system model

NUCLEAR REACTIONS 58Ni(16O, X), E=100 MeV; calculated sum of average fragment spins vs the charge number of the light fragment. 58Ni(40Ar, X), E=280 MeV; calculated root mean square of the single fragment spin and of the sum of fragment spins as a function of the charge number of one of the fragments. Ag(20Ne, X), E=175 MeV; calculated sum of the average fragment spins with and without considering the fragment deformations. 89Y(40Ar, X), E=237 MeV; Ag(40Ar, X), E=288, 340 MeV; 63Cu(20Ne, X), E=166 MeV; calculated γ-ray multiplicity and average spin of heavy fragment as function of charge number of light fragment. 63Cu(20Ne, X), E=166 MeV; calculated square root of the sum of variances of fragment spin distributions versus charge number of light fragment, average orbital angular momentum of the DNS as a function of charge number of one DNS nuclei. 89Y(40Ar, X), E(cm)=80-220 MeV; calculated average total spins, total spin components and average temperatures of the DNS arising from pure excitation of the orbital with bending, twisting, and tilting modes of the fragments of different charge numbers. Dinuclear system (DNS) model calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.96.044611
Citations: PlumX Metrics


2016PA21      Phys.Rev. C 93, 054602 (2016)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko, Y.Kim

Energy dependence of mass, charge, isotopic, and energy distributions in neutron-induced fission of 235U and 239Pu

NUCLEAR REACTIONS 235U, 239Pu(n, F), E=thermal, 10-55 MeV; calculated mass, charge, isotopic, and kinetic-energy distributions of fission fragments. 214,218Ra, 230,232,238U(γ, F); calculated charge distributions. 238U(n, F), E=32.8, 45.3, 59.9 MeV; calculated mass distributions. Improved scission-point statistical model with dinuclear system (DNS) model for the fission observables. Comparison with available experimental data.

doi: 10.1103/PhysRevC.93.054602
Citations: PlumX Metrics


2016PA46      Phys.Rev. C 94, 064614 (2016)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Unexpected asymmetry of the charge distribution in the fission of 222, 224Th at high excitation energies

NUCLEAR REACTIONS 218,220,222,224,226,228Th(E, F), E(*)=11 MeV; calculated charge distributions, driving potentials averaged over fragment mass number and deformations, components of the driving potentials, deformations of fragments. 222,224,226,228Th(E, F), E(*)=11, 35, 60 MeV; calculated charge distributions at different excitation energies of the initial compound nucleus, energy surfaces for 76,78,80,82,84,86,88,90,92,94Kr fragmentations. Improved scission-point model. Comparison with experimental data.

doi: 10.1103/PhysRevC.94.064614
Citations: PlumX Metrics


2016PA47      Eur.Phys.J. A 52, 369 (2016)

H.Pasca, A.V.Andreev, G.G.Adamian, N.V.Antonenko

Extraction of potential energy in charge asymmetry coordinate from experimental fission data

RADIOACTIVITY 212,214,216,218Ra, 218,220,222,224,226,228Th, 230,232,234U(SF); calculated fission fragment deformation vs charge using fit to the observed yields.

NUCLEAR REACTIONS 222,224,226,228Th(γ, F), E not given; calculated potential energy surfaces, yields using observed charge distribution.

doi: 10.1140/epja/i2016-16369-5
Citations: PlumX Metrics


Back to query form