NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 6, 2024.

Search: Author = H.M.Mittal

Found 26 matches.

Back to query form



2020KA60      Int.J.Mod.Phys. E29, 2050081 (2020)

M.Karday, A.Dadwal, H.M.Mittal

Examination of phenomenological formulae in superdeformed bands of A ∼ 190, 150 mass regions

NUCLEAR STRUCTURE 194Hg, 193Tl, 192,194,196Pb, 152Dy; analyzed available data; calculated band-head spins for super deformed bands, rms deviations using rotational energy formulae.

doi: 10.1142/S0218301320500810
Citations: PlumX Metrics


2020KA67      Phys.Scr. 95, 105303 (2020)

M.Karday, A.Dadwal, H.M.Mittal

Systematic study of superdeformed rotational bands in Hg isotopes

NUCLEAR STRUCTURE 189,190,191,192,193,194,195Hg; analyzed available data; deduced band-head spin and the parameters, SD bands, γ-transition energies using a least-squares fitting method. The exponential model with pairing attenuation and the nuclear softness formula.

doi: 10.1088/1402-4896/abb49e
Citations: PlumX Metrics


2019DA03      Eur.Phys.J. A 55, 12 (2019)

A.Dadwal, H.M.Mittal

Spins and moment of inertia of superdeformed bands in the Pb isotopes

NUCLEAR STRUCTURE 194Hg, 193Tl, 192,194,196Pb; compiled, analyzed spin assignments for superdeformed (SD) bands. 192Tl, 192,193,194,195,196,197Pb; calculated spins of uperdeformed (SD) bands states, SD band head spins using VMI-IBM model; deduced parameters. 192Tl, 193,195,197Pb; calculated kinematic and dynamic moment of inertia vs rotational frequency; compared with data.

doi: 10.1140/epja/i2019-12678-5
Citations: PlumX Metrics


2019DA06      Phys.Rev. C 99, 044305 (2019)

A.Dadwal, H.M.Mittal

Empirical evidence of a superrigid structure of "flat" uperdeformed bands

NUCLEAR STRUCTURE 189,191,192,193,194,195Tl, 192,193,194,195,196,197Pb; analyzed experimental data for superdeformed bands, and gamma-transition energies using shape fluctuation model, semiclassical vibration distortion model, semiclassical particle rotor model, and exponential model with pairing attenuation; deduced fitting parameters.

doi: 10.1103/PhysRevC.99.044305
Citations: PlumX Metrics


2018BI06      Nucl.Phys. A975, 48 (2018)

A.Bindra, H.M.Mittal

The magnification of structural anomalies with Grodzins systematic in the framework of Asymmetric Rotor Model

NUCLEAR STRUCTURE 142,144,146Ba, 144,146,148Ce, 144,146,148,150Nd, 148,150,152,154Sm, 152,154,156,158,160Gd(SF), 154,156,158,160,162,164Dy, 156,158,160,162,164,166,168,170Er, 160,164,166,168,170,172,174Yb, 172,174,176,178,180Hf, 180,182,184,186W, 182,184,186,188,190,192Os, 184,186,188,190,192,194,196Pt; calculated E(2+1) times B(E2) and E(SF) times B(E2) (Grodzins products) vs asymmetry parameter γ0 using ARM (Asymmetric Rotor Model); deduced Grodzins parameters, breakdown of coherence between rotational energy and γ-excitation strength B(E2), indication for a shape transition for Pt isotopes.

doi: 10.1016/j.nuclphysa.2018.04.004
Citations: PlumX Metrics


2018DA10      J.Phys.(London) G45, 065103 (2018)

A.Dadwal, H.M.Mittal

Identical superdeformed bands in yrast 152Dy: a systematic description

NUCLEAR STRUCTURE 151,152,153Dy, 151Tb; analyzed available data; deduced difference between the calculated and experimental intraband-γ transition energies for super deformed bands, parameters obtained from the least-squares fitting the identical bands.

doi: 10.1088/1361-6471/aac0d1
Citations: PlumX Metrics


2018KA33      Pramana 91, 70 (2018)

M.Karday, H.M.Mittal, R.Mehra

Systematic study of rigid triaxiality in Ba-Pt nuclei and role of Z=64 subshell effect subshell effect

NUCLEAR STRUCTURE Z=50-82; analyzed available data; calculated deformation parameters, quadrupole moments. Comparison with available data.

doi: 10.1007/s12043-018-1645-7
Citations: PlumX Metrics


2018SH19      Chin.Phys.C 42, 054104 (2018)

H.Sharma, H.M.Mittal

Band head spin assignment of superdeformed bands in Hg isotopes through power index formula

NUCLEAR STRUCTURE 189,190,191,192,193,194,195Hg; analyzed available data; deduced transition energies, head spins of super deformed band, moment of inertia using the power index formula.

doi: 10.1088/1674-1137/42/5/054104
Citations: PlumX Metrics


2017BI06      Chin.Phys.C 41, 054102 (2017)

A.Bindra, H.M.Mittal

Systematic dependence of SFE*B(E2)↑ and ROTE*B(E2)↑ on Np Nn in the framework of shape fluctuation model

NUCLEAR STRUCTURE Z=56-64; analyzed available B(E2) data; deduced systematic trends.

doi: 10.1088/1674-1137/41/5/054102
Citations: PlumX Metrics


2017DA05      Eur.Phys.J. A 53, 2 (2017)

A.Dadwal, H.M.Mittal

Spins of superdeformed rotational bands in Tl isotopes

NUCLEAR STRUCTURE 191,192,193,194,195Tl, 194,196Pb; calculated rotational bands, SD band, excited SD band levels, J, dynamical moment of inertia using soft-rotor model. Compared with available data.

doi: 10.1140/epja/i2017-12190-0
Citations: PlumX Metrics


2017DA18      Eur.Phys.J. A 53, 132 (2017)

A.Dadwal, H.M.Mittal

Description of identical superdeformed bands of the A ∼ 190 mass region

NUCLEAR STRUCTURE 191,192,193,194,195Hg, 193,194,195Tl, 193,194Pb; calculated rotational superdeformed yrast, excited bands energy, J, band-head moment of inertia, alignment, γ-ray transition energies using two-parameter model (nuclear softness formula, semiclassical particle rotor model) and exponential model with pairing attenuation; deduced 12 identical (yrast, excited, middle-point identical) superdeformed rotational bands, parameters.

doi: 10.1140/epja/i2017-12308-4
Citations: PlumX Metrics


2017SH22      Chin.Phys.C 41, 084104 (2017)

H.Sharma, N.Sharma, H.M.Mittal

Systematic study of kinematic and dynamic moments of inertia of superdeformed bands with NpNn scheme

NUCLEAR STRUCTURE N=72-112; analyzed available data; deduced systematics of kinematic moment of inertia, dynamic moment of inertia of superdeformed bands in A ∼ 130, 150, 190 mass regions.

doi: 10.1088/1674-1137/41/8/084104
Citations: PlumX Metrics


2017SH48      Int.J.Mod.Phys. E26, 1750074 (2017)

H.Sharma, H.M.Mittal

Band head spin assignment of superdeformed bands in A∼60-80 mass region through nuclear softness formula

NUCLEAR STRUCTURE 58Ni, 58Cu, 62,65,68Zn, 84,86Zr; analyzed available data; deduced the band head spin of superdeformed rotational bands, dynamic moment of inertia, the nuclear softness formula applicability.

doi: 10.1142/S0218301317500744
Citations: PlumX Metrics


2017SH56      Chin.Phys.C 41, 124105 (2017)

H.Sharma, H.M.Mittal

Systematic study of rotational energy formulae for superdeformed bands in La and Ce isotopes

NUCLEAR STRUCTURE 130La, 131,132,133Ce; analyzed available data; calculated of superdeformed (SD) band head spins using four parameter formula.

doi: 10.1088/1674-1137/41/12/124105
Citations: PlumX Metrics


2016DA01      Int.J.Mod.Phys. E25, 1650038 (2016)

A.Dadwal, H.M.Mittal, N.Sharma

Level spins of superdeformed bands in A ∼ 80 mass region

NUCLEAR STRUCTURE 80,81,82,83Sr, 82,83Y, 83Zr; calculated band head spin, J parameters. Comparison with available data.

doi: 10.1142/S0218301316500385
Citations: PlumX Metrics


2016DA10      Chin.Phys.C 40, 114103 (2016)

A.Dadwal, H.M.Mittal

Band head spin assignment of superdeformed bands in 86Zr

NUCLEAR STRUCTURE 86Zr; analyzed available data; deduced the band head spins; calculated transition energies; deduced dynamic moment of inertia. VMI model.

doi: 10.1088/1674-1137/40/11/114103
Citations: PlumX Metrics


2016KU18      Chin.Phys.C 40, 094104 (2016)

P.Kumari, H.M.Mittal

Systematic study of the product ((E(2+2)/E(2+1))*B(E2) ↑) through the asymmetric rotor model

NUCLEAR STRUCTURE Z=50-82; analyzed available data; calculated (E(2+2)/E(2+1))*B(E2)↑ product values.

doi: 10.1088/1674-1137/40/9/094104
Citations: PlumX Metrics


2015KU14      Int.J.Mod.Phys. E24, 1550033 (2015)

P.Kumari, H.M.Mittal

Systematic dependence of Grodzins product rule on NpNn

NUCLEAR STRUCTURE Z=50-82, N=82-126; analyzed available data; deduced systematics of the Grodzins product rule.

doi: 10.1142/S0218301315500330
Citations: PlumX Metrics


2015KU18      Phys.Scr. 90, 085304 (2015)

P.Kumari, H.M.Mittal

Study of multiphonon γγ-band in neutron-rich 112Ru nucleus and molybdenum isotopes

NUCLEAR STRUCTURE 112Ru, 104,106,108Mo; calculated γ and γγ band energies, J, π, staggering indices, constant energy terms. Comparison with available data.

doi: 10.1088/0031-8949/90/8/085304
Citations: PlumX Metrics


2013SH09      Phys.Rev. C 87, 024322 (2013)

N.Sharma, H.M.Mittal, S.Kumar, A.K.Jain

Empirical evidence for magic numbers of superdeformed shapes

NUCLEAR STRUCTURE A=57-137, 148-154, 189-198; analyzed γ-ray energy ratios for superdeformed structures; deduced nuclear softness parameter, superdeformed magic numbers.

doi: 10.1103/PhysRevC.87.024322
Citations: PlumX Metrics


2013SH34      Int.J.Mod.Phys. E22, 1350053 (2013)

N.Sharma, H.M.Mittal

Systematic study of nuclear softness of superdeformed bands in A = 190 mass region

NUCLEAR STRUCTURE 191Au, 189,190,191,192,193,194,195Hg, 189,191,192,193,194,195Tl, 196,197Bi, 198Po; calculated superdeformed bands, nuclear softness parameter. Comparison with ENSDF and XUNDL databases.

doi: 10.1142/S0218301313500535
Citations: PlumX Metrics


2011MI23      J.Phys.:Conf.Ser. 312, 092041 (2011)

H.M.Mittal, V.Devi

The odd-even staggering in 122-24Xe and 124-128Ba nuclei

NUCLEAR STRUCTURE 122,123,124Xe, 124,125,126,127,128Ba; calculated levels, J, π, rotational bands, signature splitting. Compared to data.

doi: 10.1088/1742-6596/312/9/092041
Citations: PlumX Metrics


2011MI24      J.Phys.:Conf.Ser. 312, 092042 (2011)

H.M.Mittal, V.Devi

Study of triaxiality in Xe-Hg nuclei

NUCLEAR STRUCTURE Xe, Ba, Ce, Nd, Sm, Gd, Dy, Er, Yb, Hf, W, Os, Pt, Hg; calculated deformation parameters using rigid triaxial rotor model.

doi: 10.1088/1742-6596/312/9/092042
Citations: PlumX Metrics


1991MI05      Phys.Scr. 43, 558 (1991)

H.M.Mittal, S.Sharma, J.B.Gupta

Tests of Rigid Triaxiality for Light Te-Sm Nuclei

NUCLEAR STRUCTURE 118,120,122,124,126,128Te, 120,122,124,126,128,130,132Xe, 126,128,130,132,134Ba, 134,136Ce, 136,138Nd, 138,140Nd; analyzed B(E2) ratios; deduced shape features.

doi: 10.1088/0031-8949/43/6/004
Citations: PlumX Metrics


1990GU06      Phys.Scr. 41, 660 (1990)

J.B.Gupta, H.M.Mittal, S.Sharma

Study of Shape Phase Transitions and the F-Spin Multiplets through the Shape Fluctuation Energy

NUCLEAR STRUCTURE A=120-200; calculated shape fluctuation energy; deduced F-spin multiplet shape phase transition features. Interacting boson model, even-even nuclei.

doi: 10.1088/0031-8949/41/5/006
Citations: PlumX Metrics


1990GU12      Phys.Rev. C42, 1373 (1990)

J.B.Gupta, H.M.Mittal, J.H.Hamilton, A.V.Ramayya

Systematic Dependence of the γ-g B(E2) Ratios on the N(p)N(n) Product

NUCLEAR STRUCTURE A=120-200; analyzed B(E2) systematics; deduced N(p)N(n) scheme limitations.

doi: 10.1103/PhysRevC.42.1373
Citations: PlumX Metrics


Back to query form