NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 3, 2024.

Search: Author = B.Apagyi

Found 23 matches.

Back to query form



2011SC20      Int.J.Mod.Phys. E20, 1765 (2011)

W.Scheid, B.Apagyi

Discussion of quantum inverse scattering problems for coupled channels at fixed energy

doi: 10.1142/S0218301311019660
Citations: PlumX Metrics


2007AP01      Nucl.Phys. A790, 767c (2007)

B.Apagyi, W.Scheid, O.Melchert, D.Schumayer

Interatomic-potential inversion from ultracold Bose-gas collision

doi: 10.1016/j.nuclphysa.2007.03.023
Citations: PlumX Metrics


2006ME09      J.Phys.(London) G32, 849 (2006)

O.Melchert, W.Scheid, B.Apagyi

Inversion of real and complex phase shifts to potentials by the generalized Cox-Thompson inverse scattering method at fixed energy

NUCLEAR REACTIONS 4He(n, X), E=15-24 MeV; 12C(n, X), E=9-12 MeV; analyzed phase shifts; deduced scattering potential features.

doi: 10.1088/0954-3899/32/6/008
Citations: PlumX Metrics


2001BA77      Int.J.Mod.Phys. E10, 129 (2001)

B.Bathory, S.Jesgarz, W.Scheid, B.Apagyi

Application of an Approximate Inversion Method to Short-Ranged Potentials

doi: 10.1142/S0218301301000496
Citations: PlumX Metrics


2000EB02      J.Phys.(London) G26, 1065 (2000)

M.Eberspacher, K.Amos, W.Scheid, B.Apagyi

An Approximation Method for the Solution of the Coupled-Channels Inverse Scattering Problem at Fixed Energy

NUCLEAR REACTIONS 12C(α, α'), E not given; calculated S-matrix elements, inverted S-matrix elements. Dipole interaction, coupled-channels inverse scattering solution.

doi: 10.1088/0954-3899/26/7/307
Citations: PlumX Metrics


2000EB03      Phys.Rev. C61, 064605 (2000)

M.Eberspacher, K.Amos, B.Apagyi

Solution of the Inverse Scattering Problem at Fixed Energy with Nonphysical S Matrix Elements

NUCLEAR REACTIONS 12C(12C, 12C), E=7.998 MeV; analyzed σ(θ); deduced parameters. Use of nonphysical S matrix elements in inversion potential discussed.

doi: 10.1103/PhysRevC.61.064605
Citations: PlumX Metrics


2000EB06      Phys.Rev. C62, 064610 (2000)

M.Eberspacher, K.Amos, B.Apagyi

Inverse Scattering Method for Transfer Reactions

NUCLEAR REACTIONS 16O(α, 8Be), E not given; calculated S-matrix elements; deduced inversion potential features. Modified Newton-Sabatier method.

doi: 10.1103/PhysRevC.62.064610
Citations: PlumX Metrics


1998AP03      Acta Phys.Hung.N.S. 8, 75 (1998)

B.Apagyi, F.Muranyi, H.Voit

Inversion Potentials Describing Elastic Scattering of 12C Nuclei at Ec.m. = 11.254 and 13.032 MeV

NUCLEAR REACTIONS 12C(12C, 12C), E(cm)=11.254, 13.032; analyzed phase shift analysis data; deduced inversion potentials. Fixed-energy quantum inversion.


1997AP06      Acta Phys.Hung.N.S. 5, 167 (1997)

B.Apagyi, G.Endredi, P.Levay

A Model Independent 12C-12C Potential

NUCLEAR REACTIONS 12C(12C, 12C), E(cm)=14.1 MeV; calculated inversion potential. Modified Newton-Sabatier inversion method.


1996AL01      Phys.Rev. C53, 88 (1996)

N.Alexander, K.Amos, B.Apagyi, D.R.Lun

Nucleon-α-Particle Interactions from Inversion of Scattering Phase Shifts

NUCLEAR REACTIONS 4He(n, n), E=1-24 MeV; 4He(p, p), E=1.97-17.45 MeV; calculated σ(θ), polarization vs θ; deduced inversion potentials from phase shifts.

doi: 10.1103/PhysRevC.53.88
Citations: PlumX Metrics


1995AP01      Phys.Scr. T56, 224 (1995)

B.Apagyi, W.Scheid

Cluster Potentials Obtained from Differential Cross Sections at Low Energies

NUCLEAR REACTIONS 12C(12C, 12C), E(cm)=8-12 MeV; analyzed σ(θ); deduced model potentials, parameters. Modified Newton-Sabatier inverse scattering method, cluster potentials.

doi: 10.1088/0031-8949/1995/T56/032
Citations: PlumX Metrics


1994AP01      Phys.Rev. C49, 2608 (1994)

B.Apagyi, A.Schmidt, W.Scheid, H.Voit

12C + 12C Elastic Scattering Potentials Obtained by Unifying Phase-Shift Analysis with the Modified Newton-Sabatier Inverse Method

NUCLEAR REACTIONS 12C(12C, 12C), E(cm)=8-12 MeV; analyzed σ(θ). Unification of phase shift analysis with modified Newton-Sabatier inverse method.

doi: 10.1103/PhysRevC.49.2608
Citations: PlumX Metrics


1994EN08      Few-Body Systems 17, 199 (1994)

G.Endredi, B.Apagyi

Analytical Independent-Particle Model for Electron Scattering by Argon at Low Energy

ATOMIC PHYSICS Ar(e, e), E ≤ 3 eV; calculated σ(E). Analytical independent particle model.


1992AP01      J.Phys.(London) G18, 195 (1992)

B.Apagyi, A.Ostrowski, W.Scheid, H.Voit

Phase Analysis and Inversion to a Potential for 12C + 12C Elastic Scattering at E(cm) = 9.50 and 11.38 MeV

NUCLEAR REACTIONS 12C(12C, 12C), E(cm)=6-14 MeV; calculated σ(θ); deduced model parameters. Two-step procedure, phase shift analysis plus inverse scattering problem.

doi: 10.1088/0954-3899/18/1/015
Citations: PlumX Metrics


1990AP01      J.Phys.(London) G16, 451 (1990)

B.Apagyi, K.-E.May, T.Hauser, W.Scheid

Search for a Non-Local Potential from a Local Potential Obtained with Elastic Scattering Phase Shifts of the Algebraic Scattering Theory

NUCLEAR REACTIONS 28Si(16O, 16O), E(cm)=20.12, 22.3 MeV; calculated potentials. Inversion procedure, local to nonlocal potential.

doi: 10.1088/0954-3899/16/3/015
Citations: PlumX Metrics


1984AP03      J.Phys.(London) G10, 791 (1984)

B.Apagyi, W.Scheid

Application of the Dini Expansion Method to the Evaluation of Non-Local Coupling Potentials

NUCLEAR REACTIONS 16O(16O, 12C), E not given; calculated intercluster potential characteristics; deduced multipole expansion coefficients. Analytic approach, Dini expansion technique.

doi: 10.1088/0305-4616/10/6/013
Citations: PlumX Metrics


1981AP02      Acta Phys.Acad.Sci.Hung. 51, 171 (1981)

B.Apagyi, T.Vertse

DWBA Calculation of the Cross Section of the 12C(6Li, d)16O [O+2, 6.05 MeV] Reaction

NUCLEAR REACTIONS 12C(6Li, d), E=18 MeV; analyzed σ(θ). 16O level deduced Sα, normalization. Exact finite-range DWBA analysis.

doi: 10.1007/BF03155575
Citations: PlumX Metrics


1981KR09      Nucl.Phys. A364, 159 (1981)

O.Krause, B.Apagyi, W.Scheid

Multipole Expansion of Non-Local Coupling Potentials for Cluster Transfer and Application to 16O(16O, 12C)20Ne

NUCLEAR REACTIONS 16O(16O, 12C), E not given; calculated nonlocal cluster transfer coupling potentials. Multipole expansion, inert constituent cluster model.

doi: 10.1016/0375-9474(81)90439-5
Citations: PlumX Metrics


1980AP02      Phys.Rev. C21, 779 (1980)

B.Apagyi, T.Vertse

Configuration Mixing Effect in the 12C(6Li, d)16O* α-Transfer Reaction

NUCLEAR REACTIONS 12C(6Li, d), E=18, 20, 28 MeV; calculated σ(θ). 16O levels deduced configuration mixing. Zero range DWBA, CCBA, microscopic form factors.

doi: 10.1103/PhysRevC.21.779
Citations: PlumX Metrics


1978AP02      J.Phys.(London) G4, 1859 (1978)

B.Apagyi

Analysis of the α-Spectroscopic Amplitudes of 16O

NUCLEAR REACTIONS 12C(6Li, d), E not given; calculated Sα of 16O using shell model wave functions, procedure of Apayagi, Fai.

doi: 10.1088/0305-4616/4/12/007
Citations: PlumX Metrics


1977AP01      J.Phys.(London) G3, L-163 (1977)

B.Apagyi, G.Fai

α-Spectroscopic Amplitudes of 16O in the Zuker, Buck and Mcgrory Shell Model

NUCLEAR STRUCTURE 16O; calculated α S. Shell model.

doi: 10.1088/0305-4616/3/8/004
Citations: PlumX Metrics


1976AP01      Nucl.Phys. A272, 303 (1976)

B.Apagyi, G.Fai, J.Nemeth

Alpha Decay of Light Nuclei

NUCLEAR STRUCTURE 16O; calculated α-spectroscopic amplitudes, Γα of lowest 2+ levels. Zuker, Buck, McGrory shell-model wave functions.

doi: 10.1016/0375-9474(76)90333-X
Citations: PlumX Metrics


1976AP02      Nucl.Phys. A272, 317 (1976)

B.Apagyi, G.Fai, J.Nemeth

Calculation of the Parity Violating Alpha-Decay Width of 16O

NUCLEAR STRUCTURE 16O; calculated Γα of 8.87-MeV 2- level.

doi: 10.1016/0375-9474(76)90334-1
Citations: PlumX Metrics


Back to query form