NSR Query Results


Output year order : Descending
Format : Normal

NSR database version of May 1, 2024.

Search: Author = A.L.Goodman

Found 42 matches.

Back to query form



2001GO13      Phys.Rev. C63, 044325 (2001)

A.L.Goodman

T = 0 and T = 1 Pairing in Rotational States of the N = Z Nucleus 80Zr

NUCLEAR STRUCTURE 80Zr; calculated rotational bands energies, moments of inertia, T=0 and T=1 pairing features. Hartree-Fock-Bogoliubov approach.

doi: 10.1103/PhysRevC.63.044325
Citations: PlumX Metrics


2001GO21      Nucl.Phys. A687, 206c (2001)

A.L.Goodman

Shape Transitions in Hot Rotating Nuclei

NUCLEAR STRUCTURE 188Os, 196Pt; calculated nuclear shapes, deformation as function of temperature and spin. Hartree-Fock-Bogolyubov method.

doi: 10.1016/S0375-9474(01)00622-4
Citations: PlumX Metrics


2000GO31      Phys.Scr. T88, 170 (2000)

A.L.Goodman

T = 0 and T = 1 Pair Correlations in N = Z Nuclei with A = 76-96

NUCLEAR STRUCTURE 76Sr, 80Zr, 84Mo, 88Ru, 92Pd, 96Cd; calculated average pair gap, pairing energy; deduced relative T=0, T=1 pairing contributions.

doi: 10.1238/Physica.Topical.088a00170
Citations: PlumX Metrics


1999GO12      Phys.Rev. C60, 014311 (1999)

A.L.Goodman

Proton-Neutron Pairing in Z = N Nuclei with A = 76-96

NUCLEAR STRUCTURE 76Sr, 80Zr, 84Mo, 88Ru, 92Pd, 96Cd; calculated deformation, pair correlation features, proton-neutron pairing contributions. Hartree-Fock - Bogoliubov theory.

doi: 10.1103/PhysRevC.60.014311
Citations: PlumX Metrics


1998GO09      Nucl.Phys. A633, 223 (1998)

A.L.Goodman

Expansion of Moment of Inertia at High Temperature

NUCLEAR STRUCTURE 188Os, 204Hg; calculated moment of inertia vs rotational frequency, temperature. Z=50-126 calculated expansion coefficients for moment of inertia at finite temperature.

doi: 10.1016/S0375-9474(97)00814-2
Citations: PlumX Metrics


1998GO26      Phys.Rev. C58, R3051 (1998)

A.L.Goodman

T = 0 and T = 1 Pair Correlations in N = Z Medium-Mass Nuclei

NUCLEAR STRUCTURE 76Sr, 80Zr, 84Mo, 88Ru, 92Pd, 96Cd; calculated ground state pairing strengths; deduced T=0, 1 pairing contributions. HFB equation, isospin generalized BCS equations.

doi: 10.1103/PhysRevC.58.R3051
Citations: PlumX Metrics


1997GO15      Z.Phys. A358, 131 (1997)

A.L.Goodman, T.Jin

Second Shape Transition Temperature: Prolate noncollective to oblate noncollective

NUCLEAR STRUCTURE Z=50-82; N=82-126; calculated deformation vs temperature in even-even nuclei; deduced shape transition temperatures for some nuclei. Finite-temperature HFB theory.

doi: 10.1007/s002180050287
Citations: PlumX Metrics


1996DO01      Nucl.Phys. A596, 91 (1996)

F.A.Dodaro, A.L.Goodman

Statistical Orientation Fluctuations in 188Os

NUCLEAR STRUCTURE 188Os; calculated statistical fluctuations in orientation. Finite temperature HFB equation, 3D-cranking, pairing-plus-quadrupole interaction.

doi: 10.1016/0375-9474(95)00397-5
Citations: PlumX Metrics


1996GO20      Phys.Rev. C54, 1165 (1996)

A.L.Goodman, T.Jin

Systematics of First and Second Shape Transition Temperatures in Heavy Nuclei

NUCLEAR STRUCTURE Z=72-80; N=110-126; calculated shape transition associated temperatures for even-even Yb, Pt, Hg, W, Hf, Os isotopes; deduced systematics.

doi: 10.1103/PhysRevC.54.1165
Citations: PlumX Metrics


1996GO42      Nucl.Phys. A611, 139 (1996)

A.L.Goodman, T.Jin

Temperature Induced Shape Transition: Prolate noncollective to oblate noncollective

NUCLEAR STRUCTURE 188Os, 196Pt; calculated free energy, shape probability distributions contour maps, B(E2), quadrupole moment, deformation vs temperature; deduced shape transition tricritical point. Finite temperature HFB cranking calculations.

doi: 10.1016/S0375-9474(96)00323-5
Citations: PlumX Metrics


1995GO24      Nucl.Phys. A591, 182 (1995)

A.L.Goodman

Shape Transitions in 188Os

NUCLEAR STRUCTURE 188Os; calculated static electric quadrupole moment, quadrupole deformation vs temperature; deduced shape transitions related features. Finite temperature HFB cranking equation.

doi: 10.1016/0375-9474(95)00176-2
Citations: PlumX Metrics


1995GO25      Nucl.Phys. A592, 151 (1995)

A.L.Goodman

Does Rotation of a Hot Spherical Nucleus Generate an Oblate or a Prolate Shape ( Question )

NUCLEAR STRUCTURE Z=50-122; 180Os, 196Pt, 200Hg, 167Tb, 166Er, 158Yb, 148Sm; calculated quadrupole moment quadratic expansion coefficient vs temperature.

doi: 10.1016/0375-9474(95)00211-I
Citations: PlumX Metrics


1994DO04      Phys.Rev. C49, 1482 (1994)

F.A.Dodaro, A.L.Goodman

Three-Dimensional Cranking at Finite Temperature

doi: 10.1103/PhysRevC.49.1482
Citations: PlumX Metrics


1994DO10      Nucl.Phys. A573, 47 (1994)

F.A.Dodaro, A.L.Goodman

Dynamic Inertia Tensor for a Hot Rotating Nucleus

doi: 10.1016/0375-9474(94)90014-0
Citations: PlumX Metrics


1994GO24      Phys.Rev.Lett. 73, 416 (1994); Erratum Phys.Rev.Lett. 73, 1734 (1994)

A.L.Goodman

Rotation Induced Prolate Spheroid Above the Critical Temperature

NUCLEAR STRUCTURE 188Os; calculated shape features due to small rotations above critical temperature; deduced quantum shell effects role.

doi: 10.1103/PhysRevLett.73.416
Citations: PlumX Metrics


1994RO29      Int.J.Mod.Phys. E3, 1251 (1994)

G.Rosensteel, A.L.Goodman

Kelvin Circulation in a Cranked Anisotropic Oscillator + BCS Mean Field

doi: 10.1142/S0218301394000401
Citations: PlumX Metrics


1993GO21      Phys.Rev. C48, 2679 (1993)

A.L.Goodman

Shape Transitions in 148Sm

NUCLEAR STRUCTURE 148Sm; calculated proton pair gap, intrinsic quadrupole moment, B(λ), statitic electric quadrupole moment vs T; deduced shape transitions. Finite temperature HFB cranking equation.

doi: 10.1103/PhysRevC.48.2679
Citations: PlumX Metrics


1991GO08      Nucl.Phys. A528, 348 (1991)

A.L.Goodman

Thermal Shape Fluctuations in Hot Rotating Nuclei: Comparison of constant energy constraint and constant temperature constraint

NUCLEAR STRUCTURE 166Er, 158Yb; calculated shape probability, temperature vs deformation. Hot rotating nuclei.

doi: 10.1016/0375-9474(91)90093-L
Citations: PlumX Metrics


1990AK01      Phys.Rev. C41, 1126 (1990)

Y.A.Akovali, K.S.Toth, A.L.Goodman, J.M.Nitschke, P.A.Wilmarth, D.M.Moltz, M.N.Rao, D.C.Sousa

Single-Particle States in 151Tm and 151Er: Systematics of neutron states in N = 83 Nuclei

RADIOACTIVITY 151Yb, 151Tm(β+) [from 96Ru(58Ni, X), E=360 MeV]; measured Eγ, Iγ, γ(t), γγ-coin; deduced log ft. 151Tm, 151Er deduced levels, J, π, T1/2.

NUCLEAR STRUCTURE 133Sb, 135I, 137Cs, 139La, 141Pr, 143Pm, 145Eu, 147Tb, 149Ho, 151Tm, 137Xe, 139Ba, 141Ce, 143Nd, 145Sm, 147Gd, 149Dy, 151Er; calculated single particle state energies. Hartree-Fock-Bogoliubov method.

doi: 10.1103/PhysRevC.41.1126
Citations: PlumX Metrics


1990GO19      Phys.Scr. T32, 52 (1990)

A.L.Goodman

Thermal Fluctuations in Moment of Inertia and Rotational Frequency and Transition from Quasivibrational to Quasirotational Structures in Hot 158Yb Nuclei

NUCLEAR STRUCTURE 158Yb; calculated moment of inertia, rotational frequency vs spin. Hot rotating nucleus.

doi: 10.1088/0031-8949/1990/T32/009
Citations: PlumX Metrics


1990GO27      Nucl.Phys. A520, 567c (1990)

A.L.Goodman

Thermal Shape Fluctuations at Constant Energy

NUCLEAR STRUCTURE 166Er; calculated shape probability, temperature, energy vs deformation. Constant energy ensemble.

doi: 10.1016/0375-9474(90)91175-Q
Citations: PlumX Metrics


1989GO08      Phys.Rev. C39, 2008 (1989)

A.L.Goodman

Shapes and Shape Fluctuations in Hot Rotating 158Yb Nuclei

NUCLEAR STRUCTURE 158Yb; calculated levels, static quadrupole moments vs temperature, B(E2), shape transitions. HFB method.

doi: 10.1103/PhysRevC.39.2008
Citations: PlumX Metrics


1989GO10      Phys.Rev. C39, 2478 (1989)

A.L.Goodman

Transition from Quasivibrational to Quasirotational Structures in Hot Rotating 158Yb Nuclei

NUCLEAR STRUCTURE 158Yb; calculated levels, shape transitions, moment of inertia vs square of angular velocity. HFB method.

doi: 10.1103/PhysRevC.39.2478
Citations: PlumX Metrics


1989GO20      Nucl.Phys. A504, 413 (1989)

A.L.Goodman

Moment of Inertia and Rotational Frequency in Hot Rotating 158Yb Nuclei

NUCLEAR STRUCTURE 158Yb; calculated levels, moment of inertia, nucleon pair gaps, quadrupole deformation parameters. Hot rotating nuclei.

doi: 10.1016/0375-9474(89)90549-6
Citations: PlumX Metrics


1988GO09      Phys.Rev. C37, 2162 (1988)

A.L.Goodman

Statistical Shape Fluctuations in 166Er

NUCLEAR STRUCTURE 166Er; calculated thermal shape fluctuations. Finite temperature cranked HFB theory.

doi: 10.1103/PhysRevC.37.2162
Citations: PlumX Metrics


1988GO16      Phys.Rev. C38, 977 (1988)

A.L.Goodman

Temperature-Dependent Shape Transition in 166Er

NUCLEAR STRUCTURE 166Er; calculated gap energies, nucleon pair correlations vs T, level energy vs spin, moments of inertia, level density parameter. HFB cranking equation, finite temperature.

doi: 10.1103/PhysRevC.38.977
Citations: PlumX Metrics


1988GO17      Phys.Rev. C38, 1092 (1988)

A.L.Goodman

Shape Transitions in Hot Rotating 158Yb Nuclei

NUCLEAR STRUCTURE 158Yb; calculated level energy vs spin, quadrupole deformation vs temperature; deduced most probable shape.

doi: 10.1103/PhysRevC.38.1092
Citations: PlumX Metrics


1987GO22      Phys.Rev. C35, 2338 (1987)

A.L.Goodman

Temperature-Induced Noncollective Rotation in 166Er

NUCLEAR STRUCTURE 166Er; calculated quadrupole deformation, moment of inertia, spin vs temperature; deduced noncollective rotation. Hartree-Fock-Bogoliubov cranking equation.

doi: 10.1103/PhysRevC.35.2338
Citations: PlumX Metrics


1986GO22      Phys.Rev. C34, 1942 (1986)

A.L.Goodman

Finite-Temperature Hartree-Fock-Bogoliubov Calculations in Rare Earth Nuclei

NUCLEAR STRUCTURE 148Sm, 170Er, 186,188Os; calculated deformation, pairing gaps vs temperature. Finite-temperature HFB calculations.

doi: 10.1103/PhysRevC.34.1942
Citations: PlumX Metrics


1985TO11      Phys.Rev. C32, 342 (1985)

K.S.Toth, Y.A.Ellis-Akovali, F.T.Avignone III, R.S.Moore, D.M.Moltz, J.M.Nitschke, P.A.Wilmarth, P.K.Lemmertz, D.C.Sousa, A.L.Goodman

Single-Particle States in 149Er and 149Ho, and the Effect of the Z = 64 Closure

NUCLEAR STRUCTURE 133Sb, 135I, 137Cs, 139La, 141Pr, 143Pm, 145Eu, 147Tb, 149Ho, 131Sn, 133Te, 137Ba, 139Ce, 141Nd, 143Sm, 145Gd, 147Dy, 149Er; calculated single particle states. Hartree-Fock method.

RADIOACTIVITY 149Er(β+), (EC), 149mEr [from 144Sm(12C, 7n), E=135 MeV]; measured Eγ, Iγ, γγ-coin, T1/2, β-delayed Ep, Ip. 149Er deduced levels, J, π, ICC. 149Ho deduced levels, J, π. Mass separation.

doi: 10.1103/PhysRevC.32.342
Citations: PlumX Metrics


1979GO02      Phys.Rev.Lett. 42, 357 (1979)

A.L.Goodman

Approximate Angular Momentum Projection from Cranked Intrinsic States

NUCLEAR STRUCTURE 168,170Yb, 174Hf; calculated energies of high-spin states. cranked Hartree-Fock-Bogoliubov, approximate projection techniques.

doi: 10.1103/PhysRevLett.42.357
Citations: PlumX Metrics


1979GO14      Nucl.Phys. A325, 171 (1979)

A.L.Goodman

Angular Momentum Fluctuation Energy in the Cranking Model

NUCLEAR STRUCTURE 168,170Yb, 174Hf; calculated energy levels. cranked Hartree-Fock-Bogoliubov wave functions, approximate angular momentum projection.

doi: 10.1016/0375-9474(79)90159-3
Citations: PlumX Metrics


1979GO22      Nucl.Phys. A331, 401 (1979)

A.L.Goodman

On the Z = 64 Shell Closure

NUCLEAR STRUCTURE 134,138,142,146,150,154,158,162,166Gd; calculated single n, p energies; deduced no shell closure at Z=64.spherical Hartree-Fock-Bogoliubov calculations.

doi: 10.1016/0375-9474(79)90350-6
Citations: PlumX Metrics


1977GO09      Nucl.Phys. A287, 1 (1977)

A.L.Goodman

The h9/2 'Intruder' State in Odd Mass Au and Tl Isotopes

NUCLEAR STRUCTURE 185,187,189,191,193,195,197,199,201Tl, 187,189,191,193,195,197Au; calculated levels, h9/2 proton level characteristics.

doi: 10.1016/0375-9474(77)90560-7
Citations: PlumX Metrics


1976GO03      Phys.Rev. C13, 1674 (1976)

A.L.Goodman, J.P.Vary, R.A.Sorensen

Ground State Properties of Medium-Heavy Nuclei with a Realistic Interaction

COMPILATION A=100-208; compiled, calculated ground state properties.

doi: 10.1103/PhysRevC.13.1674
Citations: PlumX Metrics


1976GO15      Nucl.Phys. A265, 113 (1976)

A.L.Goodman

Self-Consistent Field Description of High Spin States in Rare Earth Nuclei

NUCLEAR STRUCTURE 168,170Yb, 174Hf; calculated wavefunctions, backbending.

doi: 10.1016/0375-9474(76)90119-6
Citations: PlumX Metrics


1976SC38      Ann.Rev.Nucl.Part.Sci. 26, 239 (1976)

G.Scharff-Goldhaber, C.B.Dover, A.L.Goodman

The Variable Moment of Inertia (VMI) Model and Theories of Nuclear Collective Motion

NUCLEAR STRUCTURE 4He, 14,16O, 14C, 40Ca, 72Ge, 96Zr, 98Mo, 208Pb; analyzed available data; deduced J, π, level energy systematics for the first-excited states in even-even nuclei.

doi: 10.1146/annurev.ns.26.120176.001323
Citations: PlumX Metrics


1975GO17      Phys.Rev.Lett. 35, 504 (1975)

A.L.Goodman, J.P.Vary

High-Spin Anomalies in Yb: Coriolis Antipairing Versus Pair Realignment with a Realistic Interaction

NUCLEAR STRUCTURE 168,170Yb; calculated backbending.

doi: 10.1103/PhysRevLett.35.504
Citations: PlumX Metrics


1975SA10      Phys.Rev. C12, 1340 (1975)

T.S.Sandhu, M.L.Rustgi, A.L.Goodman

Generalized Pairing in N = Z Even-Even 2p-1f Shell Nuclei

NUCLEAR STRUCTURE 44Ti, 48Cr, 52Fe, 56Ni, 60Zn; calculated binding energies, quadrupole moments, pickup strengths. Hartree-Fock-Bogoliubov method with generalized pairing.

doi: 10.1103/PhysRevC.12.1340
Citations: PlumX Metrics


1974GO11      Phys.Rev. C9, 1948 (1974)

A.L.Goodman, A.Goswami

Extension of the Variable-Moment-of-Inertia Model to Large Values of Angular Momentum and the Explanation of the s Shape of the Moment-of-Inertia vs omega2 Curve

NUCLEAR STRUCTURE 158,160Dy; 158,160,162Er, 166Yb; calculated high-angular-momentum levels of the ground rotational band. The band-mixing semiphenomenological model.

doi: 10.1103/PhysRevC.9.1948
Citations: PlumX Metrics


1972GO16      Nucl.Phys. A186, 475 (1972)

A.L.Goodman

Generalized Gap Equations and the Coherence of the α-α Pair Field

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 36Ar; calculated levels, wave functions, α-α pairing energy. Hartree-Fock-Bogoliubov theory.

doi: 10.1016/0375-9474(72)90978-5
Citations: PlumX Metrics


1970GO16      Phys.Rev. C2, 380 (1970)

A.L.Goodman, G.L.Struble, J.Bar-Touv, A.Goswami

Generalized Pairing in Light Nuclei. II. Solution of the Hartree-Fock-Bogoliubov Equations with Realistic Forces and Comparison of Different Approximations

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 36Ar; calculated levels, quadrupole moment. Hartree-Fock-Bogoliubov theory, generalized isospin pairing.

doi: 10.1103/PhysRevC.2.380
Citations: PlumX Metrics


Back to query form