References quoted in the ENSDF dataset: 100SN ADOPTED LEVELS

228 references found.

Clicking on a keynumber will list datasets that reference the given article.


1990AL07

Z.Phys. A335, 265 (1990)

D.Alber, H.H.Bertschat, H.Grawe, H.Haas, B.Spellmeyer, X.Sun

First In-Beam Observation of 97Ag - The Three-Proton-Hole Spectrum in 100Sn

NUCLEAR REACTIONS 46Ti(58Ni, 2npα), (58Ni, n2pα), (58Ni, 2n3pα), E=230 MeV; 64Zn(36Ar, 2np), E=130 MeV; measured γ(particle), γγ(particle)-coin, γ(t). 97Ag deduced levels, J, π, T1/2. 97Pd deduced isomer J, π, T1/2. 95Rh deduced levels, J, π. Shell model comparison.

NUCLEAR STRUCTURE 97Ag, 95Rh, 100Sn; calculated levels. Shell model.


1990BO48

Yad.Fiz. 52, 985 (1990); Sov.J.Nucl.Phys. 52, 627 (1990)

I.N.Borzov, E.L.Trykov, S.A.Fayans

Strength Functions of Gamow-Teller Excitations of Stable and Neutron-Deficient Nuclei

NUCLEAR STRUCTURE 54Fe, 60Ni, 94Ru, 96Pd, 110,108,106,104,102,100Sn, 148Dy, 150Er; calculated Gamow-Teller transition strength functions.


1992CI03

Z.Phys. A341, 261 (1992)

O.Civitarese, A.Faessler, M.C.Licciardo

Pair Density Fluctuations in a Number Projected BCS Approximation

NUCLEAR STRUCTURE 100,124Sn; calculated microscopic, macroscopic one-body density, pair density fluctuations; deduced number projection role. BCS treatment.


1993BO43

Bull.Rus.Acad.Sci.Phys. 57, 1783 (1993)

I.N.Borzov, S.A.Fayans, K.Rykaczewski

Gamow-Teller β-Decay of Nuclei in the Vicinity of 100Sn

RADIOACTIVITY 100,101,102,103,104,105,106,107,108,109Sn(β+); calculated β+-decay energy, Q(EC), Gamow-Teller transition strength; deduced renormalization features. Finite Fermi systems theory.


1993HA23

Phys.Rev. C48, R960 (1993)

I.Hamamoto, H.Sagawa

Gamow-Teller Beta Decay and Isospin Impurity in Nuclei Near the Proton Drip Line

NUCLEAR STRUCTURE 56Ni, 64Ge, 76Sr, 78Zr, 100,106Sn; calculated Gamow-Teller transition strength nonenergy weighted sum rule percentage. 12C, 16O, 40Ca, 56Ni, 64Ge, 76Sr, 80Zr, 100Sn; calculated isospin mixing probabilities. Hartree-Fock plus TDA approximation.

doi: 10.1103/PhysRevC.48.R960


1993KA25

Z.Phys. A346, 253 (1993)

S.Kamerdzhiev, J.Speth, G.Tertychnyi, J.Wambach

M1 Resonances in Unstable Magic Nuclei

NUCLEAR STRUCTURE 48Ca, 208Pb, 56,78Ni, 100,132Sn; calculated M1 transition strength distributions, B(M1). Microscopic approach, RPA configurations, single particle continuum.


1994BR28

Phys.Rev. C50, R2270 (1994)

B.A.Brown, K.Rykaczewski

Gamow-Teller Strength in the Region of 100Sn

NUCLEAR STRUCTURE 100Sn, 98Cd, 96Pd, 94Ru; calculated β+ decay associated Gamow-Teller transition strength distribution. Shell model approach.

doi: 10.1103/PhysRevC.50.R2270


1994BR29

Nucl.Phys. A577, 13c (1994)

B.A.Brown

Gamow-Teller Strength in Nuclei with N = Z from 12C to 100Sn

NUCLEAR STRUCTURE 4He, 12C, 16O, 28Si, 20Ne, 24Mg, 32S, 40Ca, 56Ni, 100Sn; calculated Gamow-Teller strength. Shell model.

doi: 10.1016/0375-9474(94)90827-3


1994DO02

Phys.Rev.Lett. 72, 981 (1994)

J.Dobaczewski, I.Hamamoto, W.Nazarewicz, J.A.Sheikh

Nuclear Shell Structure at Particle Drip Lines

NUCLEAR STRUCTURE 100Sn, 100Zn; calculated nucleon densities, central potentials radial dependences. A=120; calculated single particles levels for isobars. Self-consistent mean-field theory.

doi: 10.1103/PhysRevLett.72.981


1994DO19

Acta Phys.Pol. B25, 541 (1994)

J.Dobaczewski, I.Hamamoto, W.Nazarewicz, J.A.Sheikh

Nuclear Structure at Particle Drip Lines

NUCLEAR STRUCTURE 100,118,132,150Sn; calculated single particle nucleonic densities. A=100, 120, 150; calculated single particle levels. A=94-110; calculated Q(EC) for Ru, PD, Cd, Sn isotopes. 76,78,80,82Sr; calculated levels. Mean field approach.


1994HJ02

Phys.Rev. C50, 501 (1994)

M.Hjorth-Jensen, H.Muther, A.Polls

Width of the Δ Resonance in Nuclei

NUCLEAR STRUCTURE 40Ca, 16O, 100Sn; calculated two-body absorption component of Δ self-energy vs distance from center of nucleus, imaginary part vs deposited energy.

doi: 10.1103/PhysRevC.50.501


1994KA10

Nucl.Phys. A569, 313c (1994)

S.Kamerdzhiev, G.Tertychnyi, J.Speth

Theoretical Description of Giant Resonances in Stable and Unstable Magic Nuclei

NUCLEAR REACTIONS 208Pb(γ, X), E ≤ 35 MeV; calculated photoabsorption σ(E). Microscopic approach, Green function method, RPA with complex configuration.

NUCLEAR STRUCTURE 40Ca, 56,78Ni, 100,132Sn, 208Pb; calculated diverse giant resonance excitation functions, B(λ). Microscopic approach, Green function method, RPA with complex configuration.

doi: 10.1016/0375-9474(94)90122-8


1994LE27

Phys.Lett. 332B, 20 (1994)

M.Lewitowicz, R.Anne, G.Auger, D.Bazin, C.Borcea, V.Borrel, J.M.Corre, T.Dorfler, A.Fomichov, R.Grzywacz, D.Guillemaud-Mueller, R.Hue, M.Huyse, Z.Janas, H.Keller, S.Lukyanov, A.C.Mueller, Yu.Penionzhkevich, M.Pfutzner, F.Pougheon, K.Rykaczewski, M.G.Saint-Laurent, K.Schmidt, W.D.Schmidt-Ott, O.Sorlin, J.Szerypo, O.Tarasov, J.Wauters, J.Zylicz

Identification of the Doubly-Magic Nucleus 100Sn in the Reaction 112Sn + (nat)Ni at 63 MeV/Nucleon

NUCLEAR REACTIONS Ni(112Sn, X)100Sn, E=63 MeV/nucleon; measured fragment Z vs mass to charge ratio; deduced evidence for 100Sn. Production σ lower limit given.

doi: 10.1016/0370-2693(94)90852-4


1994SC22

Z.Phys. A348, 241 (1994)

R.Schneider, J.Friese, J.Reinhold, K.Zeitelhack, T.Faestermann, R.Gernhauser, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.J.Korner, H.Geissel, G.Munzenberg, K.Summerer

Production and Identification of 100Sn

NUCLEAR REACTIONS 9Be(124Xe, X)100Sn, E=1095 MeV/nucleon; measured residual production σ following projectile fragmentation. Fragment identification by event by event magnetic rigidity, tof, energy deposition.


1994SC34

Z.Phys. A350, 91 (1994)

J.Schaffner, J.A.Maruhn, H.Stocker, W.Greiner

Proton Halos in 100Sn using a Relativistic Shell Model

NUCLEAR STRUCTURE 100Sn; calculated binding energy, proton, neutron separation energies.


1995CH57

Phys.Scr. T56, 231 (1995)

E.Chabanat, P.Bonche, P.Haensel, J.Meyer, R.Schaeffer

New Skyrme Effective Forces for Supernovae and Neutron Rich Nuclei

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated two neutron separation energies. Z=32-78; calculated two proton separation energies. Hartree-Fock plus BCS formalism, new Skyrme-like effective interactions.


1995CO16

Phys.Rev. C52, R1175 (1995)

G.Colo, M.A.Nagarajan, P.Van Isacker, A.Vitturi

Isospin Mixing in Proton-Rich N ≈ Z Nuclei

NUCLEAR STRUCTURE 90Zr, 99,100Sn, 99In, 40Ca, 88Sr, 208Pb; calculated isospin admixtures. 100Sn; calculated isovector giant monopole resonance strength distribution. Hartree-Fock approach, Skyrme forces.

doi: 10.1103/PhysRevC.52.R1175


1995DO05

Phys.Rev. C51, R1070 (1995)

J.Dobaczewski, W.Nazarewicz

Limits of Proton Stability Near 100Sn

NUCLEAR STRUCTURE 94,96,98,100Cd, 96,98,100,102Sn, 98,100,102,104Te; calculated total energy. 106,108,110Te, 94,96,98,100,102Sn; calculated two proton separation energies; deduced proton stability features. 92,94,96,98,100,102Sn; calculated single particle proton energies. Skyrme HFB theory.

doi: 10.1103/PhysRevC.51.R1070


1995DO08

Phys.Lett. 345B, 181 (1995)

J.Dobaczewski, I.Hamamoto

Isospin Impurities in Ground States of N = Z Nuclei Near the Proton-Drip Line

NUCLEAR STRUCTURE 56Ni, 64Ge, 76Sr, 80Zr, 100Sn; calculated isospin mixing probabilities. Deformed Hartree-Fock solutions, Skyrme interaction.

doi: 10.1016/0370-2693(94)01634-O


1995GR10

Acta Phys.Pol. B26, 341 (1995)

H.Grawe, R.Schubart, M.Gorska, K.H.Maier, J.B.Fitzgerald, J.Heese, M.Rejmund, K.Spohr, and the OSIRIS and NORDBALL Collaborations

The Experimental and Shell Model Approach to 100Sn

NUCLEAR REACTIONS 46,48Ti(58Ni, 2n2p), E=230 MeV; measured nγγ-, pγγ-coin. 100,102Cd deduced levels, J, π. Model comparison.

NUCLEAR STRUCTURE 98Ag, 100,104,106Sn; analyzed levels, B(λ) data in some cases. 105Sb; calculated proton-, γ-decay schemes.


1995GR16

Phys.Scr. T56, 71 (1995)

H.Grawe, R.Schubart, K.H.Maier, D.Seweryniak, and the OSIRIS/NORDBALL Collaborations

The Shell Model at 100Sn-An Experimental Status Report

NUCLEAR STRUCTURE 91Zr, 93Mo, 95Ru, 95,97Pd, 99Cd, 104,105,106,107,101Sn; calculated levels. 16O, 40Ca, 56Ni; analyzed Coulomb energy shifts. 100Sn; deduced single particle energies, Coulomb energy shifts between protons, neutrons. Shell model.


1995JO14

Phys.Rev. C51, 2817 (1995)

I.P.Johnstone, L.D.Skouras

Binding Energies of Proton-Rich Nuclei in the Vicinity of 100Sn

NUCLEAR STRUCTURE 90,91,92Zr, 91,92,93Nb, 92,93,94Mo, 93,94,95Tc, 94,95,96Ru, 95,96,97Rh, 96,97,98Pd, 97,98,99Ag, 98,99,100Cd, 99,100,101In, 100,101,102Sn; calculated binding energies; deduced relevance to β-decay, β-delayed proton emission.

doi: 10.1103/PhysRevC.51.2817


1995JO15

J.Phys.(London) G21, L63 (1995)

I.P.Johnstone, L.D.Skouras

The Spectrum and Decay of 100Sn

NUCLEAR STRUCTURE 100Sn, 100In; calculated levels; deduced β+-decay characteristics.

doi: 10.1088/0954-3899/21/8/001


1995LE14

Nucl.Phys. A588, 197c (1995)

M.Lewitowicz, R.Anne, G.Auger, D.Bazin, C.Borcea, V.Borrel, J.M.Corre, T.Dorfler, A.Fomichov, R.Grzywacz, D.Guillemaud-Mueller, R.Hue, M.Huyse, Z.Janas, H.Keller, S.Lukyanov, A.C.Mueller, Yu.Penionzhkevich, M.Pfutzner, F.Pougheon, K.Rykaczewski, M.G.Saint-Laurent, K.Schmidt, W.D.Schmidt-Ott, O.Sorlin, J.Szerypo, O.Tarasov, J.Wauters, J.Zylicz

Identification of 100Sn and Other Proton Drip-Line Nuclei in the Reaction 112Sn(63 MeV/nucl.)+(Nat)Ni

NUCLEAR REACTIONS Ni(112Sn, X), E=63 MeV/nucleon; measured (fragment)γ(t), fragment mass distribution; deduced evidence for 103,104Sb, 98In, 91Pd, 89Rh, 87Ru, 66mAs.

doi: 10.1016/0375-9474(95)00139-R


1995RE10

J.Phys.(London) G21, 691 (1995)

Z.Ren, G.-O.Xu, B.Chen, Z.Ma

Ground-State Properties of the Nucleus 100Sn in Relativistic and Non-Relativistic Mean-Field Approaches

NUCLEAR STRUCTURE 100,114,132Sn; calculated binding energy per nucleon, n-, p- radii, differences. Mean field approach, Skyrme interactions.

doi: 10.1088/0954-3899/21/5/013


1995RY03

Phys.Rev. C52, R2310 (1995)

K.Rykaczewski, R.Anne, G.Auger, D.Bazin, C.Borcea, V.Borrel, J.M.Corre, T.Dorfler, A.Fomichov, R.Grzywacz, D.Guillemaud-Mueller, R.Hue, M.Huyse, Z.Janas, H.Keller, M.Lewitowicz, S.Lukyanov, A.C.Mueller, Yu.Penionzhkevich, M.Pfutzner, F.Pougheon, M.G.Saint-Laurent, K.Schmidt, W.D.Schmidt-Ott, O.Sorlin, J.Szerypo, O.Tarasov, J.Wauters, J.Zylicz

Identification of New Nuclei at and Beyond the Proton Drip Line Near the Doubly Magic Nucleus 100Sn

NUCLEAR REACTIONS Ni(112Sn, X), E=58, 62 MeV/nucleon; measured heavy fragments energy loss, total kinetic energy, Eγ, Iγ; deduced evidence for 103,104Sb, 98In, 91Pd, 89Rh, 87Ru. Other fragments atomic, mass numbers, charge state deduced. Tof.

doi: 10.1103/PhysRevC.52.R2310


1995SA10

Nucl.Phys. A583, 755c (1995)

H.Sagawa

Perspectives on Study of Unstable Nuclei Near Drip Lines

NUCLEAR STRUCTURE 11Be; calculated dipole transition strength. 56Ni, 64Ge, 78Zr, 100Sn; calculated Gamow-Teller giant resonance energy. 6He; calculated monopole, dipole, quadrupole RPA responses. Microscopic Hartree-Fock + RPA.

doi: 10.1016/0375-9474(94)00754-B


1995SA34

Nucl.Phys. A588, 209c (1995)

H.Sagawa

Structure of Unstable Nuclei Near Proton Drip Line

NUCLEAR STRUCTURE 56Co, 64Ga, 78Zn, 100In; calculated Gamow-Teller giant resonance energy relative to mother nucleus ground state. 12C, 16O, 40Ca, 56Ni, 64Ge, 78Sr, 80Zr, 100Sn; calculated isospin mixing probabilities. 76Sr, 64Ge, 56Ni, 100,106Sn; calculated potential energy vs deformation. Hartree-Fock+TDA (or RPA), finite-range droplet model.

doi: 10.1016/0375-9474(95)00141-M


1995SA49

Phys.Scr. T56, 84 (1995)

N.Sandulescu, J.Blomqvist, R.J.Liotta

Microscopic Description of Light Sn Isotopes

NUCLEAR STRUCTURE A=100-114; compiled, reviewed level calculation, Sn isotopes. Shell model.


1995SC28

Nucl.Phys. A588, 191c (1995)

R.Schneider, T.Faestermann, J.Friese, R.Gernhauser, H.Geissel, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.-J.Korner, G.Munzenberg, J.Reinhold, K.Summerer, K.Zeitelhack

Production, Identification, and Halflife Measurement of 100Sn

NUCLEAR REACTIONS 9Be(124Xe, X), E=1.095 GeV/nucleon; measured fragment energy deposition vs mass to charge ratio for 100,101Sn, 100,98,99In.

RADIOACTIVITY 102,100Sn(β+); 104Sb(β+p); 105Sb(β+); 108Te(β+), (α) [from 9Be(124Xe, X), E=1.095 GeV/nucleon]; measured T1/2.

doi: 10.1016/0375-9474(95)00138-Q


1995SC33

Phys.Scr. T56, 67 (1995)

R.Schneider, T.Faestermann, J.Friese, R.Gernhauser, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.J.Korner, J.Reinhold, K.Zeitelhack, H.Geissel, G.Munzenberg, K.Summerer

Identification and Halflife Measurement of 100Sn and Neighbouring Nuclei

NUCLEAR REACTIONS 9Be(124Xe, X), E=1095 MeV/nucleon; measured energy deposition vs (M/Q), fragment decay event energy spectra; deduced evidence for 100Sn.

RADIOACTIVITY 105,104,100Sn(β+) [from 9Be(124Xe, X), E=1095 MeV/nucleon]; measured T1/2.


1995SC50

Z.Phys. A352, 373 (1995)

R.Schubart, H.Grawe, J.Heese, H.Kluge, K.H.Maier, M.Schramm

Shell Model Structure at 100Sn - The Nuclides 98Ag, 103In, and 104,105Sn

NUCLEAR REACTIONS, ICPND 50Cr(58Ni, xnypzα), E=250 MeV; measured γγ-, nγγ-, pγγ-, αγγ-coin, Eγ, Iγ; deduced production σ for 102-105Sn, 102-105In, 98-104Cd, 98-103Ag, 95-100Pd, 94-97Rh. 106,104,105Sn, 98Ag, 103In deduced levels, J, π, B(λ), Iγ. Shell model comparison.


1995SCZZ

GSI-94-1, p.26 (1995)

R.Schneider, T.Faestermann, J.Friese, R.Gernhauser, H.Geissel, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.-J.Korner, G.Munzenberg, J.Reinhold, K.Summerer, K.Zeitelhack

Production and Decay Measurements of 100Sn

NUCLEAR REACTIONS 9Be(124Xe, X), E=1.095 GeV/nucleon; measured fragment mass to charge ratio, α-decay characteristics of 108Te, 105,104Sb, 100,102Sn.

RADIOACTIVITY 102,100Sn(β+), 104Sb(β+); 108Te(β+), (α) [from 9Be(124Xe, X), E=1.095 GeV/nucleon]; measured decay characteristics.


1996BO11

Z.Phys. A355, 117 (1996)

I.N.Borzov, S.A.Fayans, E.Kromer, D.Zawischa

Ground State Properties and β-Decay Half-Lives Near 132Sn in a Self-Consistent Theory

NUCLEAR STRUCTURE 100,132Sn; calculated nucleon, matter density distributions. 40Ca, 208Pb; calculated density distributions. 127,129,128,130Cd, 133,134Sn, 138Te, 123,125,127,129Ag, 131,133,135In, 135Sb; calculated levels, J, π, Qβ, T1/2, Gamow-Teller strength distributions. 124,125,126,131,132,133Cd; calculated T1/2.

doi: 10.1007/s002180050088


1996CH32

Phys.Rev.Lett. 77, 2400 (1996)

M.Chartier, G.Auger, W.Mittig, A.Lepine-Szily, L.K.Fifield, J.M.Casandjian, M.Chabert, J.Ferme, A.Gillibert, M.Lewitowicz, M.Mac Cormick, M.H.Moscatello, O.H.Odland, N.A.Orr, G.Politi, C.Spitaels, A.C.C.Villari

Mass Measurement of 100Sn

ATOMIC MASSES 100Cd, 100In, 100Sn; measured masses with respect to 100Ag. Secondary mass=100 ions from 58Ni(50Cr, X) reactions.

doi: 10.1103/PhysRevLett.77.2400


1996DE63

Phys.Lett. 367B, 17 (1996)

D.J.Dean, S.E.Koonin, T.T.S.Kuo, K.Langanke, P.B.Radha

Complete 0(h-bar x Omega) Shell Model Carlo Calculations of 94Ru, 96Pd, 96,98Cd and 100Sn

NUCLEAR STRUCTURE 94Ru, 96Pd, 96,98Cd, 100Sn; calculated Gamow-Teller transition, masses, strengths. Shell model Monte Carlo technique.

doi: 10.1016/0370-2693(95)01446-2


1996DO06

Phys.Rev. C53, 2809 (1996)

J.Dobaczewski, W.Nazarewicz, T.R.Werner, J.F.Berger, C.R.Chinn, J.Decharge

Mean-Field Description of Ground-State Properties of Drip-Line Nuclei: Pairing and continuum effects

NUCLEAR STRUCTURE 132,120,150,172,100Sn; calculated neutron, pairing densities, other aspects. Mean-field approach.

doi: 10.1103/PhysRevC.53.2809


1996HA02

Phys.Rev. C53, 765 (1996)

I.Hamamoto, H.Sagawa, X.Z.Zhang

Single-Particle and Collective Properties of Drip-Line Nuclei

NUCLEAR STRUCTURE 110Ni, 100,120Sn, 120Sr; calculated Hartree-Fock density, Hartree-Fock potential vs r. 110Ni, 100Sn; calculated isoscalar, isovector monopole, isovector dipole, isoscalar quadrupole modes strength functions. Hartree-Fock with Skyrme interactions, RPA.

doi: 10.1103/PhysRevC.53.765


1996HJ02

J.Phys.(London) G22, 321 (1996)

M.Hjorth-Jensen, H.Muther, E.Osnes, A.Polls

Comparison of the Effective Interaction to Various Orders in Different Mass Regions

NUCLEAR STRUCTURE 4He, 16O, 40Ca, 100Sn, 208Pb; calculated diagonal, nondiagonal matrix elements, mean value ratios; deduced higher-order terms contributions stability mass dependence. Effective interaction to various orders, shell model.

doi: 10.1088/0954-3899/22/3/006


1996KA09

Nucl.Phys. A599, 373c (1996)

S.Kamerdzhiev, J.Speth

Distribution of Giant Resonance Strength in Stable and Unstable Nuclei

NUCLEAR REACTIONS 208Pb(γ, X), E ≤ 40 MeV; compiled, reviewed calculations of giant resonance photoabsorption σ(E). 208Pb(γ, n), E ≤ 22 MeV; calculated σ(E). Microscopic theory.

NUCLEAR STRUCTURE 48,40Ca, 56,78Ni, 100,132Sn, 208Pb; compiled, reviewed calculations of B(M1).

doi: 10.1016/0375-9474(96)00080-2


1996KI23

Hyperfine Interactions 103, 49 (1996)

P.Kienle

On the Limit of Nuclear Stability - The Region of Double Magic 100Sn and Bound-State β-Decay of 187Re75

RADIOACTIVITY 100Sn(β+) [from 9Be(124Xe, X), E=1.1 GeV/nucleon]; measured β+ endpoint energy, T1/2. 187Re(β-); measured bound state β-decay associated T1/2.

NUCLEAR REACTIONS 27Al(129Xe, X)104Sn/105Sn/106Sn/107Sn, E=790 MeV/nucleon; 9Be(129Xe, X)100Sn/101Sn/102Sn/103Sn/104Sn/105Sn/106Sn, E=1.1 GeV/nucleon; measured residuals production σ.


1996SH18

Z.Phys. A355, 247 (1996)

Y.-S.Shen, Z.Ren

Skyrme-Hartree-Fock Approach to Cd, Sn and Te Isotopes

NUCLEAR STRUCTURE 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Te; calculated binding energies, nucleon, charge radii. Skyrme Hartree-Fock approach.

doi: 10.1007/s002180050106


1996SH20

Z.Phys. A356, 133 (1996)

Y.-S.Shen, Z.Ren

Skyrme-Hartree-Fock Approach to Spherical Nuclei with Density-Dependent Pairing Correlations

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated binding energy, nucleon, charge, matter radii, isotope shifts. 28O, 30Ne, 32Mg, 34Si, 36S, 38Ar, 42Ti, 44Cr, 46Fe, 32,34,36,38,42,44,50,52Ca; calculated binding energy, nucleon, matter radii. Skyrme-Hartree-Fock model plus density-dependent correlation.

doi: 10.1007/s002180050159


1997CH49

Nucl.Phys. A627, 710 (1997)

E.Chabanat, P.Bonche, P.Haensel, J.Meyer, R.Schaeffer

A Skyrme Parametrization from Subnuclear to Neutron Star Densities

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated binding energies, radii; deduced parameters. Skyrme parametrization.

doi: 10.1016/S0375-9474(97)00596-4


1997DU06

Phys.Rev. C56, 804 (1997); Comment Phys.Rev. C59, 2952 (1999)

G.G.Dussel, H.M.Sofia, A.Tonina

Pairing Interaction and Galilei Invariance

NUCLEAR STRUCTURE 60Ni, 70,72Ge, 88Sr, 90,96Zr, 100,114,116,120,132Sn, 138Ba, 154Gd, 156Dy, 170Yb, 206,208Pb; calculated effective nucleon mass, energy-weighted sum rule; deduced mass dipole operator effect.

doi: 10.1103/PhysRevC.56.804


1997GR12

Z.Phys. A358, 185 (1997)

H.Grawe, M.Gorska, M.Lipoglavsek, R.Schubart, A.Atac, A.Axelsson, J.Blomqvist, J.Cederkall, G.de Angelis, M.de Poli, C.Fahlander, A.Johnson, K.H.Maier, L.-O.Norlin, J.Nyberg, D.Foltescu, M.Palacz, J.Persson, M.Rejmund, H.A.Roth, T.Shizuma, O.Skeppstedt, G.Sletten, M.Weiszflog, and the OSIRIS/NORDBALL-PEX/EUROBALL Collaboration

Present Status and Future Aspects of Nuclear Structure Close to 100Sn

NUCLEAR STRUCTURE 94Pd, 98,96Cd, 92Ru; compiled, reviewed level data, analyses. 99,101,100Cd, 104,106Sn, 90Zr, 48Ca, 56,68Ni; compiled, reviewed B(λ) data. 16O, 40Ca, 56Ni, 100Sn; compiled, reviewed Coulomb shift corrected single particle energies.

doi: 10.1007/s002180050302


1997HA17

Phys.Lett. 394B, 1 (1997)

I.Hamamoto, H.Sagawa

Electric Quadrupole Polarization Charges in Proton Drip Line Nuclei

NUCLEAR STRUCTURE 48Ni, 100Sn; calculated isoscalar, isovector quadrupole strength function, nucleon polarization charges, B(E2). Hartree-Fock with Skyrme interactions, RPA solved in coordinate space with the Green's function method.

doi: 10.1016/S0370-2693(96)01657-7


1997HE24

Nucl.Phys. A627, 35 (1997)

H.Herndl, B.A.Brown

Shell-Model Calculations for the Properties of Nuclei with A = 86-100 Near the Proton Drip Line

NUCLEAR STRUCTURE 92,94Pd, 90,91,92Rh, 89Tc; calculated levels, J, π. 86,87,88Sr, 86,87,88,89Y, 86,87,88,89,90Zr, 86,87,88,89,90,91Nb, 86,87,88,89,90,91,92Mo, 86,87,88,89,90,91,92,93Tc, 86,87,88,89,90,91,92,93,94Ru, 86,87,88,89,90,91,92,93,94,95Rh, 86,87,88,89,90,91,92,93,94,95,96Pd, 87,88,89,90,91,92,93,94,95,96,97Ag, 88,89,90,91,92,93,94,95,96,97,98Cd, 89,90,91,92,93,94,95,96,97,98,99In, 90,91,92,93,94,95,96,97,98,99,100Sn; calculated binding energies; deduced proton drip line. 86,87,88Sr, 86,87,88,89Y, 86,87,88,89,90Zr, 86,87,88,89,90,91Nb, 86,87,88,89,90,91,92Mo, 86,87,88,89,90,91,92,93Tc, 86,87,88,89,90,91,92,93,94Ru, 90,91,92,93,94,95Rh, 88,89,90,91,92,93,94,95,96Pd, 94,95,96,97Ag, 92,93,94,95,96,97,98Cd, 98,99In, 98,99,100Sn; calculated ground-state spin, T1/2. Shell model.

doi: 10.1016/S0375-9474(97)00407-7


1997KA50

Bull.Rus.Acad.Sci.Phys. 61, 122 (1997)

S.P.Kamerdzhiev

Microscopic Theory of Giant Resonances (A Review)

NUCLEAR STRUCTURE 40,48Ca, 208Pb, 100,132Sn, 56,78Ni, 16O; compiled, reviewed giant multipole resonance calculations; deduced models improvement related features.


1997LE36

Acta Phys.Hung.N.S. 6, 157 (1997)

A.Lepine-Szily, M.Chartier, G.Auger, W.Mittig, J.M.Casandjian, M.Chabert, L.K.Fifield, J.Ferme, A.Gillibert, M.Lewitowicz, M.MacCormick, MM.H.Moscatello, O.H.Odland, N.A.Orr, G.Politi, C.Spitaels, A.C.C.Villari

Mass Measurements Far from Stability Around the N = Z Line (100Sn, 100In, 100Cd)

ATOMIC MASSES 100Sn, 100In, 100Cd; measured masses with respect to 100Ag. Secondary A=100 ions from 58Ni(50Cr, X) reaction.

NUCLEAR REACTIONS, ICPND 58Ni(50Cr, X)100Ag/100Cd/100In/100Sn, E=5.3 MeV/nucleon; measured production σ. Comparison with statistical models.


1997MI07

Nucl.Phys. A616, 329c (1997)

W.Mittig, M.Chartier, J.C.Angelique, G.Audi, J.M.Casandjian, A.Cunsolo, C.Donzaud, M.Chabert, J.Ferme, L.K.Fifield, A.Foti, A.Gillibert, A.Lepine-Szily, M.Lewitowicz, S.Lukyanov, M.Mac Cormick, D.J.Morrissey, M.H.Moscatello, O.H.Odland, N.A.Orr, A.Ostrowski, G.Politi, C.Spitaels, B.M.Sherrill, C.Stephan, T.Suomijarvi, L.Tassan-Got, D.J.Vieira, A.C.C.Villari, J.M.Wouters

Mass Measurements Near N = Z

NUCLEAR REACTIONS Ni(78Kr, X), E=73 MeV/nucleon; measured fragment tof; deduced secondary beams (with mass ≈ 60-80) production related features. 58Ni(50Cr, X), E=5.1 MeV/nucleon; measured fragment tof; deduced 100Sn production σ. 100Cd, 100Sn, 100In deduced masses relative to 100Ag. Pure secondary beams from ions stripping technique, α-, SPEG spectrometers.

doi: 10.1016/S0375-9474(97)00104-8


1997SU06

Nucl.Phys. A616, 341c (1997)

K.Summerer, R.Schneider, T.Faestermann, J.Friese, H.Geissel, R.Gernhauser, H.Gilg, F.Heine, J.Homolka, P.Kienle, H.J.Korner, G.Munzenberg, J.Reinhold, K.Zeitelhack

Identification and Decay Spectroscopy of 100Sn at the GSI Projectile Fragment Separator FRS

RADIOACTIVITY 100Sn(β+) [from 124Xe projectile fragmentation]; measured β-decay energy, T1/2, β-delayed proton emission associated probability; deduced Qβ, Gamow-Teller strength, hindrance factor. Decay times for 100In, 100Cd also reported.

doi: 10.1016/S0375-9474(97)00106-1


1998AV03

Bull.Rus.Acad.Sci.Phys. 62, 23 (1998)

A.V.Avdeenkov

M1 Resonances in 100Sn and 132Sn Nuclei

NUCLEAR STRUCTURE 100,132Sn; calculated isovector M1 resonances energy, B(M1); deduced resonance splitting contributions. Microscopic model.


1998BR12

Phys.Rev. C58, 220 (1998)

B.A.Brown

New Skyrme Interaction for Normal and Exotic Nuclei

NUCLEAR STRUCTURE 16,24O, 34Si, 40,48Ca, 48,68Ni, 88Sr, 100,132Sn, 208Pb; analyzed binding energies, radii, single-particle energies; deduced Skyrme parameters.

doi: 10.1103/PhysRevC.58.220


1998HA39

J.Phys.(London) G24, 1417 (1998)

I.Hamamoto, H.Sagawa, X.Z.Zhang

Collective Modes of Nuclei Far from β-Stability Line

NUCLEAR STRUCTURE 28O, 34Ca, 100Sn, 208Pb; calculated isoscalar, isovector dipole strength distributions.

doi: 10.1088/0954-3899/24/8/016


1998KA29

Phys.Rev. C58, 172 (1998)

S.Kamerdzhiev, R.J.Liotta, E.Litvinova, V.Tselyaev

Continuum Quasiparticle Random-Phase Approximation Description of Isovector E1 Giant Resonances

NUCLEAR STRUCTURE 100,104,120,132Sn; calculated E1 photoabsorption σ; deduced continuum effect on giant resonances. Continuum RPA, forced consistency procedure.

doi: 10.1103/PhysRevC.58.172


1998RU03

Nucl.Phys. A634, 67 (1998)

K.Rutz, M.Bender, P.-G.Reinhard, J.A.Maruhn, W.Greiner

Odd Nuclei and Single-Particle Spectra in the Relativistic Mean-Field Model

NUCLEAR STRUCTURE 16,17O, 17F, 40,41,48,49Ca, 41,49Sc, 56,57Ni, 57Cu, 100,101,132,133Sn, 101,133Sb, 208,209Pb, 209Bi, 218,219U, 219Np; calculated levels, J, π, neutron, proton separation energies; deduced core polarization effects. Relativistic mean-field approach.

doi: 10.1016/S0375-9474(98)00153-5


1998VE02

Phys.Rev. C57, 3089 (1998)

T.Vertse, A.T.Kruppa, R.J.Liotta, W.Nazarewicz, N.Sandulescu, T.R.Werner

Shell Corrections for Finite Depth Potentials: Particle continuum effects

NUCLEAR STRUCTURE 78Ni, 90,96,104,106,108,110,122Zr, 124Zr, 132Sn, 146Gd, 208Pb, 298Fl; calculated neutron shell correction energies. 48Ni, 90Zr, 100,132Sn, 146Gd, 180,208Pb; calculated proton shell correction energies. 146Gd, 208Pb calculated smoothed level densities. Smoothing procedure with particle continuum contribution.

doi: 10.1103/PhysRevC.57.3089


1998YO10

Phys.Rev. C58, 2796 (1998)

S.Yoshida, H.Sagawa, N.Takigawa

Incompressibility and Density Distributions in Asymmetric Nuclear Systems

NUCLEAR STRUCTURE 100,104,108,112,116,120,124,128,132,136,140,150,160Sn; calculated neutron, charge, matter radii, density distributions; deduced correlation between surface diffuseness, incompressibility.

doi: 10.1103/PhysRevC.58.2796


1999DU05

Phys.Rev. C59, R2347 (1999)

J.Duflo, A.P.Zuker

The Nuclear Monopole Hamiltonian

NUCLEAR STRUCTURE 39,41,47,49Ca, 47K, 49Sc, 15,17,21,23O, 21N, 23F, 27,29,33,35,41,43Si, 33,41Al, 35,43P, 55,57,67,69,77,79Ni, 67,77Co, 69,79Cu, 79,81,89,91Zr, 89Y, 91Nb, 99,101,131,133Sn, 131In, 133Sb, 207Tl, 207,209Pb, 209Bi; calculated single-particle orbits. 12,14C, 16,22,28O, 18,34,42Si, 40,48Ca, 56,68,78Ni, 80,90Zr, 100,132Sn, 208Pb; calculated shell gaps. Monopole Hamiltonian.

doi: 10.1103/PhysRevC.59.R2347


1999RE09

Nucl.Phys. A649, 305c (1999)

P.-G.Reinhard

Skyrme Forces and Giant Resonances in Exotic Nuclei

NUCLEAR STRUCTURE 14,16,24O, 34Si, 36S, 36,40,48,60Ca, 56,66Ni, 90Zr, 100,132Sn, 146Gd, 208Pb; calculated dipole strength distributions. 16O, 208Pb calculated average resonance frequencies. 132Sn calculated neutron skin thickness. Skyrme-Hartree-Fock model, several Skyrme forces compared.

doi: 10.1016/S0375-9474(99)00076-7


1999SA22

Nucl.Phys. A649, 319c (1999)

H.Sagawa, I.Hamamoto, X.Z.Zhang

A Microscopic Study of Giant Resonances in Nuclei Near Drip Lines

NUCLEAR STRUCTURE 208Pb, 34,40,48,60Ca; calculated giant monopole resonance strength distributions. 100Sn; calculated core polarization charges, B(E2). 90Zr, 100Sn; calculated neutron, proton effective charges. Self-consistent Hartree-Fock plus RPA model.

doi: 10.1016/S0375-9474(99)00094-9


2000BO07

Acta Phys.Pol. B31, 953 (2000)

A.Bobyk, W.Kaminski, I.N.Borzov

Gamow-Teller Beta-Decay Strengths of Neutron-Deficient Tin Isotopes: Comparison of FFST and pnBCS + QRPS Results

RADIOACTIVITY 100,102,104,106,108Sn(β+); calculated Gamow-Teller strength distributions. Comparisons with data. Self-consistent finite Fermi-system theory and BCS plus quasiparticle RPA compared.

NUCLEAR STRUCTURE 100,102,104,106,108Sn; calculated Gamow-Teller β-decay strength distributions. Comparisons with data. Self-consistent finite Fermi-system theory and BCS plus quasiparticle RPA compared.


2000SA56

Int.J.Mod.Phys. E9, 507 (2000)

S.V.S.Sastry, A.K.Jain, Y.K.Gambhir

Two-Oscillator Basis Expansion for the Solution of Relativistic Mean Field Equations

NUCLEAR STRUCTURE 16O, 56Ni, 100Sn, 208Pb; calculated binding energies, radii, density distributions. Relativistic mean field, two-oscillator basis.

doi: 10.1142/S0218301300000374


2000TS06

Bull.Rus.Acad.Sci.Phys. 64, 434 (2000)

V.I.Tselyaev

Integral Characteristics of Giant Resonances and Lorentz Distribution Parameters

NUCLEAR STRUCTURE 40Ca, 100Sn, 208Pb; calculated GDR widths, energies, strength distributions. Lorentz distribution.


2001DE01

Phys.Rev. C63, 024314 (2001)

M.Del Estal, M.Centelles, X.Vinas, S.K.Patra

Effects of New Nonlinear Couplings in Relativistic Effective Field Theory

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,58,78Ni, 90Zr, 100,116,124,132Sn, 196,208,214Pb; calculated ground-state energies, radii, surface thickness. Z=30-82; calculated isotopic shifts, two-neutron separation energies. 208Pb; calculated single-particle energies. Extended relativistic mean field.

doi: 10.1103/PhysRevC.63.024314


2001HA44

Phys.Rev. C64, 024306 (2001)

M.A.Hasan, J.P.Vary, T.-S.H.Lee

Medium-Mass Nuclei with Δ Excitations under Compression

NUCLEAR STRUCTURE 90Zr, 100,132Sn; calculated constrained spherical Hartree-Fock energy vs radius, sensitivity to size of nucleon and Δ isobar model spaces.

doi: 10.1103/PhysRevC.64.024306


2001HO28

Phys.Rev. C64, 034314 (2001)

F.Hofmann, C.M.Keil, H.Lenske

Density Dependence Hadron Field Theory for Asymmetric Nuclear Matter and Exotic Nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 48,56,68Ni, 90Zr, 100,132Sn, 208Pb; calculated charge radii, binding energies. Ni, Sn; calculated binding energies, two-neutron separation energies. Density-dependent hadron field theory.

doi: 10.1103/PhysRevC.64.034314


2001RA11

Phys.Rev. C63, 044303 (2001); Comment Phys.Rev. C67, 019801 (2003)

M.Rashdan

Structure of Exotic Nuclei and Superheavy Elements in a Relativistic Shell Model

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 100,132Sn, 208Pb; calculated binding energies, charge radii. 16O, 40Ca, 298Fl; calculated single-particle energies. Sn, Pb, Cf, Fm, No, 256Rf, 258Db, 260Sg, 262Bh, 264Hs, 266Mt, 269Ds, 271Rg; calculated binding energies. Relativistic mean field theory, new relativistic force.

doi: 10.1103/PhysRevC.63.044303


2001SA77

Prog.Theor.Phys.(Kyoto), Suppl. 142, 1 (2001)

H.Sagawa

Giant Multipole States in Stable and Unstable Nuclei

NUCLEAR STRUCTURE 208Pb, 34,40,48,60Ca, 28O, 100Sn; calculated giant resonance strength distributions, transition densities, related features. Self-consistent RPA response functions.


2001SI21

Phys.Rev. C63, 055501 (2001)

T.Siiskonen, M.Hjorth-Jensen, J.Suhonen

Renormalization of the Weak Hadronic Current in the Nuclear Medium

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated weak charge-changing hadronic current renormalization.

doi: 10.1103/PhysRevC.63.055501


2001SK02

Phys.Rev. C63, 024312 (2001)

J.Skalski

Self-Consistent Calculations of the Exact Coulomb Exchange Effects in Spherical Nuclei

NUCLEAR STRUCTURE 16O, 40Ca, 48Ni, 90Zr, 100,132Sn, 208Pb, 298Fl, 310126; calculated single-proton level shifts due to Coulomb exchange, related features; deduced force independence. Comparison of exact results, Slater approximation.

doi: 10.1103/PhysRevC.63.024312


2001ST12

Phys.Rev. C63, 054309 (2001)

P.Stevenson, M.R.Strayer, J.Rikovska-Stone

Many-Body Perturbation Calculation of Spherical Nuclei with a Separable Monopole Interaction

NUCLEAR STRUCTURE 16O, 34Si, 40,48Ca, 48,56,68,78Ni, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated binding energies, charge radii. 40Ca, 208Pb; calculated charge form factors, single-particle energies. Many-body perturbation, separable monopole interaction, comparisons with data.

doi: 10.1103/PhysRevC.63.054309


2001VR02

Nucl.Phys. A692, 496 (2001)

D.Vretenar, N.Paar, P.Ring, G.A.Lalazissis

Collectivity of the Low-Lying Dipole Strength in Relativistic Random Phase Approximation

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,54,60Ca, 48,56,68,78Ni, 100,114,120,132Sn, 122Zr, 208Pb; calculated isovector dipole strength distributions, transition densities. Relativistic RPA.

doi: 10.1016/S0375-9474(01)00653-4


2002BU07

Phys.Rev. C65, 044308 (2002)

T.Burvenich, D.G.Madland, J.A.Maruhn, P.-G.Reinhard

Nuclear Ground State Observables and QCD Scaling in a Refined Relativistic Point Coupling Model

NUCLEAR STRUCTURE Ca, Ni, Sn, Pb, Cf, Fm, No, Rf, Sg, Hs; calculated binding energies. 240Pu; calculated fission barrier. Sn, Pb; calculated radii, surface thickness. 48Ca, 100Sn; calculated total baryon densities. 48Ca; calculated charge form factor. Relativistic point-coupling model, comparison with other models.

doi: 10.1103/PhysRevC.65.044308


2002BU35

Prog.Theor.Phys.(Kyoto), Suppl. 146, 130 (2002)

T.Burvenich, D.G.Madland, A.Sulaksono, J.Maruhn, P.-G.Reinhard

A Relativistic Point Coupling Model for Nuclear Structure Calculations

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,58Ni, 88Sr, 90Zr, 100,112,120,124,132Sn, 136Xe, 144Sm, 202,204,208Pb; calculated binding energies, radii. Relativistic point coupling model.


2002CO06

Phys.Rev.Lett. 88, 122701 (2002)

M.Colonna, Ph.Chomaz, S.Ayik

Mechanical and Chemical Spinodal Instabilities in Finite Quantum Systems

NUCLEAR STRUCTURE 36,40,48Ca, 100,120,132Sn; calculated instability regions in phase diagram.

doi: 10.1103/PhysRevLett.88.122701


2002DE27

Yad.Fiz. 65, 847 (2002); Phys.Atomic Nuclei 65, 814 (2002)

V.Yu.Denisov, V.A.Nesterov

Binding Energies of Nuclei and Their Density Distributions in a Nonlocal Extended Thomas-Fermi Approximation

NUCLEAR STRUCTURE 32,40,48,56Ca, 48,50,58,60,62,64,78Ni, 90Zr, 100,114,124,132Sn, 140Ce, 208Pb, 296Fl, 300Og, 302120, 308126; calculated binding energies, radii, chemical potentials, particle density distributions. Nonlocal extended Thomas-Fermi approximation, Skyrme forces.

doi: 10.1134/1.1481472


2002FA13

Eur.Phys.J. A 15, 185 (2002)

T.Faestermann, R.Schneider, A.Stolz, K.Summerer, E.Wefers, J.Friese, H.Geissel, M.Hellstrom, P.Kienle, J.J.Korner, M.Mineva, M.Munch, G.Munzenberg, C.Schlegel, K.Schmidt, P.Thirolf, H.Weick, K.Zeitelhack

Decay studies of N ≈ Z nuclei from 75Sr to 102Sn

NUCLEAR REACTIONS Be(112Sn, X), E=1 GeV/nucleon; measured fragments isotopic yields; deduced evidence for 76Y, 78Zr, 100Sn. Mass separator.

RADIOACTIVITY 75Sr, 77,78Y, 80Zr, 82Nb, 84Mo, 86Tc, 88,89Ru, 90Rh, 92,93Pd, 94Ag, 98In, 102Sn(β+), (EC) [from 112Sn fragmentation]; measured Eβ, Eγ, T1/2. 78Y, 82Nb, 86Tc, 90Rh, 94Ag, 98In deduced Q(EC). Comparisons with model predictions.

doi: 10.1140/epja/i2001-10251-7


2002HU12

Phys.Rev. C66, 024318 (2002); Erratum Phys.Rev. C67, 019901 (2003)

M.A.Huertas

Effective Lagrangian approach to structure of selected nuclei far from stability

NUCLEAR STRUCTURE 77Co, 48,77,78,79Ni, 79Cu, 99,131In, 99,100,101,131,132,133Sn, 133Sb; calculated binding energies, single-particle level energies. 100,132Sn; calculated nucleon density distributions. Effective Lagrangian approach.

doi: 10.1103/PhysRevC.66.024318


2002IS04

Eur.Phys.J. A 14, 29 (2002)

V.I.Isakov, K.I.Erokhina, H.Mach, M.Sanchez-Vega, B.Fogelberg

On the Difference between Proton and Neutron Spin-Orbit Splittings in Nuclei

NUCLEAR STRUCTURE 16O, 40Ca, 100,132Sn, 208Pb; calculated single-particle level energies, isotopic dependence of spin-orbit splitting. Several models compared.

doi: 10.1007/s10050-002-8786-1


2002IS08

Yad.Fiz. 65, 1466 (2002); Phys.Atomic Nuclei 65, 1431 (2002)

V.I.Isakov, K.I.Erokhina

Nuclear Masses and Properties of Nuclei in the Vicinity of the Remote Magic Nucleus 100Sn

NUCLEAR STRUCTURE 96,97,98,99,100Cd, 97,98,99,100,101In, 98,99,100,101,102Sn, 99,100,101,102,103Sb, 100,101,102,103,104Te; calculated mass differences. 100,132Sn; calculated nucleon density distributions. 92Mo, 94Ru, 96Pd, 98Cd, 100Sn; calculated levels, J, π, B(E2).

doi: 10.1134/1.1501655


2002MA54

Phys.Rev. C66, 024321 (2002)

Z.Y.Ma, L.Liu

Effective Dirac Brueckner-Hartree-Fock method for asymmetric nuclear matter and finite nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 48,56,68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energies, radii. 16O, 40,48Ca, 48Ni; calculated spin-orbit splitting. Dirac-Brueckner-Hartree-Fock approach.

doi: 10.1103/PhysRevC.66.024321


2002NO08

Nucl.Phys. A704, 223c (2002)

F.Nowacki

Shell Model Description of Correlations in 56Ni and 100Sn

NUCLEAR STRUCTURE 56,58,60Ni, 100,102,104Sn; calculated level energies, B(E2), core polarization effects.

doi: 10.1016/S0375-9474(02)00782-0


2002RI17

Prog.Theor.Phys.(Kyoto), Suppl. 146, 120 (2002)

P.Ring

Relativistic Random Phase Approximation and Applications for Nuclei with Large Neutron Excess

NUCLEAR STRUCTURE 116Sn; calculated giant monopole resonance strength distribution. 100,114,120,132Sn; calculated dipole strength distributions. Relativistic RPA.


2002SU31

Prog.Theor.Phys.(Kyoto), Suppl. 146, 437 (2002)

S.Sugimoto, K.Ikeda, H.Toki

Relativistic Mean Field Theory with Pion Field for Finite Nuclei

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion energies. Relativistic mean field theory.


2002TO22

Prog.Theor.Phys.(Kyoto) 108, 903 (2002)

H.Toki, S.Sugimoto, K.Ikeda

Relativistic mean-field theory with the pion in finite nuclei

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated binding energy, effect of pion mean field.


2003GI09

Nucl.Phys. A726, 3 (2003)

G.Giambrone, S.Scheit, F.Barranco, P.F.Bortignon, G.Colo, D.Sarchi, E.Vigezzi

Collective excitations in superfluid nuclei with finite-range interactions

NUCLEAR STRUCTURE 16,17,18,19,20,21,22,23,24,26O, 56,58,60,62,64,66,68Ni, 100,102,112,116,120,124,130,132Sn; calculated binding energies, radii, density, pairing energy, transitions B(E2). 56,58,60,62,64,66,68Ni, 112,116,120,124Sn; calculated GQR energy, strength distributions. Quasiparticle RPA, Gogny force, comparison with data.

doi: 10.1016/S0375-9474(03)01602-6


2003ID01

Phys.Rev. C 67, 014322 (2003)

R.Id Betan, R.J.Liotta, N.Sandulescu, T.Vertse

Shell model in the complex energy plane and two-particle resonances

NUCLEAR STRUCTURE 78Ni, 100Sn; calculated single-particle states, two-particle resonance features. Shell model in the complex energy plane.

doi: 10.1103/PhysRevC.67.014322


2003SU22

Nucl.Phys. A721, 669c (2003)

S.Sugimoto, H.Toki, K.Ikeda

Surface pion condensation in finite nuclei

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion mean field, pion energy per nucleon. Relativistic mean field approach.

doi: 10.1016/S0375-9474(03)01149-7


2003SU27

Nucl.Phys. A722, 360c (2003)

S.Sugimoto, H.Toki, K.Ikeda, N.Minkov

Relativistic mean field theory with the pion of finite nuclei

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion mean field, pion energy per nucleon. Relativistic mean field approach.

doi: 10.1016/S0375-9474(03)01390-3


2003TO16

J.Korean Phys.Soc. 43, S6 (2003)

H.Toki, K.Ikeda, S.Sugimoto

Surface Pion Condensation of Finite Nuclei in Relativistic Mean Field Theory

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion mean-field potential energy. Relativistic mean field theory.


2003TO24

Eur.Phys.J. A 18, 363 (2003)

H.Toki, K.Ikeda, S.Sugimoto

Surface pion condensation in finite nuclei

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion mean-field potential energy. Relativistic mean field theory.

doi: 10.1140/epja/i2002-10238-x


2004AG04

Phys.Rev. C 70, 014308 (2004)

B.K.Agrawal, S.Shlomo

Consequences of self-consistency violations in Hartree-Fock random-phase approximation calculations of the nuclear breathing mode energy

NUCLEAR STRUCTURE 40,60Ca, 56Ni, 80,90,110Zr, 100Sn, 208Pb; calculated giant monopole resonance energies, effect of self-consistency violations. Hartree-Fock RPA.

doi: 10.1103/PhysRevC.70.014308


2004AM11

Phys.Rev. C 70, 024607 (2004)

K.Amos, S.Karataglidis, J.Dobaczewski

Probing the densities of Sn isotopes

NUCLEAR STRUCTURE 100,110,120,130,140,150,160,170Sn; calculated particle density distributions, radii, wave functions. HFB model, Skyrme interaction.

NUCLEAR REACTIONS 100,102,104,106,108,110,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Sn(p, p), E=200 MeV; calculated σ, σ(θ). 116,118,120,122,124Sn(p, p), E=39.8, 65 MeV; calculated σ(θ), polarization observables. HFB model, Skyrme interaction.

doi: 10.1103/PhysRevC.70.024607


2004BA45

J.Phys.(London) G30, 759 (2004)

T.Babacan, D.Salamov, A.Kucukbursa, H.Babacan, I.Maras, H.A.Aygor, A.Unal

The effect of the pairing interaction on the energies of isobar analogue resonances in 112-124Sb and isospin admixture in 100-124Sn isotopes

NUCLEAR STRUCTURE 112,114,116,118,120,122,124Sb; calculated IAR energies, pairing interaction effect. 100,102,104,106,108,110,112,114,116,118,120,122,124Sn; calculated ground state isospin admixtures, pairing interaction effect. Comparisons with data.

NUCLEAR REACTIONS 112,114,116,118,120,122,124Sn(3He, t), E=200 MeV; calculated σ(θ), volume integral. Comparison with data.

doi: 10.1088/0954-3899/30/6/006


2004CO10

Nucl.Phys. A738, 108 (2004)

M.Colonna, S.Ayik, V.Baran, Ph.Chomaz, M.Di Toro

Dynamics of cluster formation in liquid-gas phase transitions

NUCLEAR STRUCTURE 36,40,48Ca, 100,120,132Sn; calculated cluster formation arising from unstable collective modes.

doi: 10.1016/j.nuclphysa.2004.04.018


2004CO13

Phys.Rev. C 70, 024307 (2004)

G.Colo, N.Van Giai, J.Meyer, K.Bennaceur, P.Bonche

Microscopic determination of the nuclear incompressibility within the nonrelativistic framework

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; analyzed binding energies, radii; deduced parameters. 208Pb; calculated giant monopole resonance energy; deduced nuclear incompressibility.

doi: 10.1103/PhysRevC.70.024307


2004IK02

Nucl.Phys. A738, 73 (2004)

K.Ikeda, S.Sugimoto, H.Toki

New mean field theory with the parity and charge mixing for the pion in nuclei

NUCLEAR STRUCTURE 12C, 16O, 40Ca, 56Ni, 80Zr, 100Sn, 164Pb; calculated pion energy per nucleon as a function of pion-nucleon coupling constant.

doi: 10.1016/j.nuclphysa.2004.04.014


2004ME13

Pramana 62, 841 (2004)

M.S.Mehta, T.K.Jha, S.K.Patra, R.K.Gupta

Potential energy surfaces for N = Z, 20Ne-112Ba nuclei

NUCLEAR STRUCTURE 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni, 60Zn, 64Ge, 68Se, 72Kr, 76Sr, 80Zr, 84Mo, 88Ru, 92Pd, 96Cd, 100Sn, 104Te, 108Xe, 112Ba; calculated energy vs deformation. Deformed relativistic mean field approach.


2004PE03

Int.J.Mod.Phys. E13, 175 (2004)

S.Peru, J.F.Berger

Giant resonances in exotic spherical nuclei within the HF + RPA approach

NUCLEAR STRUCTURE 78Ni, 100,132Sn; calculated giant resonance strength distributions, related features.

doi: 10.1142/S0218301304001916


2004YO01

Phys.Rev. C 69, 024318 (2004)

S.Yoshida, H.Sagawa

Neutron skin thickness and equation of state in asymmetric nuclear matter

NUCLEAR STRUCTURE 100,132Sn, 182,208Pb; calculated relative binding energies, neutron skin thicknesses, dependence on equation of state. Skyrme Hartree-Fock and relativistic mean-field models.

doi: 10.1103/PhysRevC.69.024318


2005AG10

Phys.Rev. C 72, 014310 (2005)

B.K.Agrawal, S.Shlomo, V.K.Au

Determination of the parameters of a Skyrme type effective interaction using the simulated annealing approach

NUCLEAR STRUCTURE 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb; analyzed binding energies, radii, breathing-mode energies, related data; deduced Skyrme parameters. 40Ca, 208Pb; calculated single-particle energies. Simulated annealing approach.

doi: 10.1103/PhysRevC.72.014310


2005AL41

J.Phys.(London) G31, S1819 (2005)

D.Almehed, P.D.Stevenson

Isovector giant monopole resonances in spherical nuclei

NUCLEAR STRUCTURE 90Zr, 100,120,132Sn, 140Ce, 208Pb; calculated isovector giant monopole resonance energies, energy-dependent mixing with isoscalar resonance. Time-dependent Hartree-Fock method, Skyrme forces.

doi: 10.1088/0954-3899/31/10/079


2005AN21

Phys.Lett. B 623, 37 (2005)

A.Ansari

Study of the lowest 2+ excitations and B(E2) transition strengths in relativistic QRPA for Sn-, and Pb-isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 204,206,208,210Pb; ; calculated levels energies, B(E2), B(E3). Relativistic quasiparticle RPA, comparison with data.

doi: 10.1016/j.physletb.2005.07.031


2005DU13

Int.J.Mod.Phys. E14, 493 (2005)

N.Dubray, J.Dudek, N.Schunck

The problem of universality of nuclear mean-field parametrizations

NUCLEAR STRUCTURE 40,48Ca, 56Ni, 90Zr, 100,132Sn, 146Gd, 208Pb; analyzed neutron and proton single-particle level energies; deduced mean-field parameters.

doi: 10.1142/S0218301305003326


2005KA47

Eur.Phys.J. A 25, Supplement 1, 135 (2005)

M.Karny, L.Batist, A.Banu, F.Becker, A.Blazhev, K.Burkard, W.Bruchle, J.Doring, T.Faestermann, M.Gorska, H.Grawe, Z.Janas, A.Jungclaus, M.Kavatsyuk, O.Kavatsyuk, R.Kirchner, M.La Commara, S.Mandal, C.Mazzocchi, K.Miernik, I.Mukha, S.Muralithar, C.Plettner, A.Plochocki, E.Roeckl, M.Romoli, K.Rykaczewski, M.Schadel, K.Schmidt, R.Schwengner, J.Zylicz

Beta-decay studies near 100Sn

RADIOACTIVITY 102Sn(β+) [from 58Ni(50Cr, X)]; measured Eγ, Iγ, γγ-coin, Eβ, B(GT). 102In levels deduced β-feeding intensities, log ft, hindrance factor. 100Sn(β+); analyzed data; deduced B(GT), hindrance factor.

NUCLEAR REACTIONS 58Ni(50Cr, X)101Sn/102Sn/103Sn/104Sn/105Sn, E ≈ 5 MeV/nucleon; measured production σ. 58Ni(50Cr, X)100Sn, E=5.8 MeV/nucleon; deduced approximate production σ.

doi: 10.1140/epjad/i2005-06-037-9


2005PA12

J.Phys.(London) G31, 185 (2005)

P.Papakonstantinou, E.Mavrommatis, J.Wambach, V.Yu.Ponomarev

A microscopic investigation of the transition form factor in the region of collective multipole excitations of stable and unstable nuclei

NUCLEAR STRUCTURE 56,78,110Ni, 100,120,132Sn; calculated isoscalar and isovector response functions, transition form factor. Self-consistent Skyrme-Hartree-Fock plus continuum RPA model.

doi: 10.1088/0954-3899/31/3/003


2005PE21

Eur.Phys.J. A 26, 25 (2005)

S.Peru, J.F.Berger, P.F.Bortignon

Giant resonances in exotic spherical nuclei within the RPA approach with the Gogny force

NUCLEAR STRUCTURE 78Ni, 100,132Sn, 208Pb; calculated giant resonance energies, strength distributions, related features. Gogny force, RPA approach.

doi: 10.1140/epja/i2005-10149-4


2005TE01

Phys.Rev. C 71, 034310 (2005)

J.Terasaki, J.Engel, M.Bender, J.Dobaczewski, W.Nazarewicz, M.Stoitsov

Self-consistent description of multipole strength in exotic nuclei: Method

NUCLEAR STRUCTURE 100,120,174,176Sn; calculated isoscalar and isovector monopole, dipole, and quadrupole strength functions. Self-consistent quasiparticle RPA.

doi: 10.1103/PhysRevC.71.034310


2005TY01

Phys.Rev. C 71, 064301 (2005)

S.Typel

Relativistic model for nuclear matter and atomic nuclei with momentum-dependent self-energies

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 56Ni, 100,132Sn, 208Pb; calculated binding energies, surface thickness, diffraction and charge radii. 16O, 48Ca, 56Ni, 132Sn, 208Pb; calculated spin-orbit splitting. 100,132Sn, 208Pb; calculated single particle energies. Relativistic mean field calculations, density-dependent meson-nucleon coupling, isoscalar meson field and nucleon field derivatives coupling, comparison with data.

doi: 10.1103/PhysRevC.71.064301


2006AG07

Phys.Rev. C 73, 034319 (2006)

B.K.Agrawal, S.K.Dhiman, R.Kumar

Exploring the extended density-dependent Skyrme effective forces for normal and isospin-rich nuclei to neutron stars

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,132Sn, 208Pb; binding energies, analyzed radii, single-particle energies; deduced parameters. Generalized Skyrme effective force.

doi: 10.1103/PhysRevC.73.034319


2006AN27

Phys.Rev. C 74, 054313 (2006)

A.Ansari, P.Ring

Lowest lying 2+ and 3- vibrational states in Pb, Sn, and Ni isotopes in relativistic quasiparticle random-phase approximation

NUCLEAR STRUCTURE 56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 194,196,198,200,202,204,206,208,210,212,214Pb; calculated vibrational states level energies, B(E2), B(E3). Relativistic quasiparticle RPA.

doi: 10.1103/PhysRevC.74.054313


2006CA04

Phys.Rev. C 73, 014313 (2006)

L.G.Cao, U.Lombardo, C.W.Shen, N.Van Giai

From Brueckner approach to Skyrme-type energy density functional

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 90Zr, 100,132Sn, 208Pb; calculated radii, binding energies, spin-orbit potentials, particle densities. Skyrme-type energy density functional.

doi: 10.1103/PhysRevC.73.014313


2006KR11

Phys.Rev.C 74, 064310 (2006)

S.Krewald, V.B.Soubbotin, V.I.Tselyaev, X.Vinas

Density matrix functional theory that includes pairing correlations

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated ground-state energies, two-neutron separation energies, related features. Quasilocal density matrix functional theory with pairing correlations.

doi: 10.1103/PhysRevC.74.064310


2006LI13

Chin.Phys.Lett. 23, 804 (2006)

M.Liu, N.Wang, Z.-X.Li, X.-Z.Wu

Neutron Skin Thickness of Nuclei and Effective Nucleon-Nucleon Interactions

NUCLEAR STRUCTURE 18O, 48Ca, 114,116,118,120,122,124,132Sn, 208Pb; calculated radii, neutron skin thickness. 38,40,48,56Ca, 82,90,96,116Zr, 92,100,112,130Sn, 180,208,220,240Pb; calculated neutron and proton density distributions. Skyrme energy density functional, comparisons with data.

doi: 10.1088/0256-307X/23/4/012


2006PA30

Phys.Atomic Nuclei 69, 1345 (2006)

N.Paar, P.Papakonstantinou, H.Hergert, R.Roth

Collective Excitations in the Unitary Correlation Operator Method and Relativistic QRPA Studies of Exotic Nuclei

NUCLEAR STRUCTURE 40Ca; calculated single-particle level energies. 4He, 16,24O, 34Si, 40,48Ca, 48,56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated binding energies. 16O, 40,48Ca, 42Ti, 44Cr, 46Fe, 90Zr, 132Sn, 208Pb; calculated transition strength distributions. Self-consistent RPA approach, unitary correlation operator method.

doi: 10.1134/S1063778806080114


2006PI06

Phys.Rev. C 73, 044325 (2006)

J.Piekarewicz

Pygmy dipole resonance as a constraint on the neutron skin of heavy nuclei

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated binding energies, radii, isovector dipole strength distributions, pygmy and giant dipole resonance features. Relativistic RPA approach.

doi: 10.1103/PhysRevC.73.044325


2006RO15

Phys.Rev. C 73, 044312 (2006)

R.Roth, P.Papakonstantinou, N.Paar, H.Hergert, T.Neff, H.Feldmeier

Hartree-Fock and many body perturbation theory with correlated realistic NN interactions

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies, radii. 16O, 40Ca, 100,132Sn, 208Pb; calculated single-particle energies. O, Ca, Ni, Sn; calculated ground-state energies for even-A isotopes. Correlated realistic nucleon-nucleon interactions.

doi: 10.1103/PhysRevC.73.044312


2006SH17

Phys.Atomic Nuclei 69, 1132 (2006)

S.Shlomo, T.Sil, V.K.Au, O.G.Pochivalov

Current Status of Equation of State of Nuclear Matter

NUCLEAR STRUCTURE 80Zr, 100,116Sn; calculated isoscalar strength distributions. 90Zr, 116Sn, 144Sm, 208Pb; calculated isoscalar giant monopole resonance energies. Fully self-consistent approach.

doi: 10.1134/S1063778806070064


2006SI10

Phys.Rev. C 73, 034316 (2006)

T.Sil, S.Shlomo, B.K.Agrawal, P.-G.Reinhard

Effects of self-consistency violation in Hartree-Fock RPA calculations for nuclear giant resonances revisited

NUCLEAR STRUCTURE 16O, 40,60Ca, 56Ni, 80,90,110Zr, 100,116Sn, 144Sm, 208Pb; calculated isoscalar and isovector giant resonance energies, consequences of self-consistency violation. 208Pb; calculated giant resonance strength functions.

doi: 10.1103/PhysRevC.73.034316


2006TE06

Phys.Rev. C 74, 044301 (2006)

J.Terasaki, J.Engel

Self-consistent description of multipole strength: Systematic calculations

NUCLEAR STRUCTURE 36,38,40,42,44,46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76Ca, 50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176Sn; calculated isoscalar and isovector 0+, 1-, 2+ strength functions, transition densities, partial energy-weighted sums. Quasiparticle RPA, Skyrme density functionals.

doi: 10.1103/PhysRevC.74.044301


2006VO08

Eur.Phys.J. A 29, 133 (2006)

W.von Oertzen

Dynamics of α-clusters in N = Z nuclei

NUCLEAR STRUCTURE 4He, 12C, 16O, 20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 52Fe, 56Ni, 72Kr, 80Zr, 100Sn, 164Pb; calculated binding energies, α-cluster features.

doi: 10.1140/epja/i2006-10076-x


2007AN16

Phys.Lett. B 649, 128 (2007)

A.Ansari, P.Ring

Magnetic dipole moment of the first excited 2+ state of Z = 50 isotopes and N = 82 isotones in relativistic QRPA

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated magnetic dipole moments. 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated excited state level energies, magnetic dipole moments, proton pairing energy, binding energy. Relativistic quasiparticle RPA and relativistic Hartree-Bogoliubov models, comparison with data.

doi: 10.1016/j.physletb.2007.04.009


2007BE24

Bull.Rus.Acad.Sci.Phys. 71, 434 (2007); Izv.Akad.Nauk RAS, Ser.Fiz. 71, 448 (2007)

O.V.Bespalova, I.N.Boboshin, V.V.Varlamov, T.A.Ermakova, B.S.Ishkhanov, E.A.Romanovskii, T.I.Spasskaya, T.P.Timokhina

Analysis of Single-Particle Energies of Doubly Magic 100, 132Sn Nuclei within the Dispersive Optical Model

NUCLEAR STRUCTURE 112,116,118,120,124Sn; analyzed single-particle energies. 100,132Sn; deduced estimate for single-particle energies of doubly-magic isotopes. Compared with dispersive optical model results.

doi: 10.3103/S1062873807030264


2007MO03

Eur.Phys.J. A 31, 23 (2007)

P.Mohr

Super-allowed α decay above doubly-magic 100Sn and properties of 104Te = 100Sn (X) α

RADIOACTIVITY 104,105,106Te, 108,109,110Xe, 212,213,214Po, 216,217,218Rn(α); calculated α-decay T1/2, Qα, preformation factors. Double-folding potentials.

doi: 10.1140/epja/i2006-10168-7


2007PA08

Phys.Rev. C 75, 014310 (2007)

P.Papakonstantinou, R.Roth, N.Paar

Nuclear collective excitations using correlated realistic interactions: The role of explicit random-phase approximation correlations

NUCLEAR STRUCTURE 16O, 40Ca, 90Zr, 100Sn, 208Pb; calculated giant resonance energies, strength distributions.

doi: 10.1103/PhysRevC.75.014310


2007RE23

Eur.Phys.J. A 32, 19 (2007)

P.-G.Reinhard, L.Guo, J.A.Maruhn

Nuclear giant resonances and linear response

NUCLEAR STRUCTURE 16O, 40Ca, 100,120,132Sn, 208Pb; calculated isovector dipole and isoscalar quadrupole GR strength distributions using time dependent HF dynamics using Skyrme forces.

doi: 10.1140/epja/i2007-10366-9


2007RO22

Nucl.Phys. A788, 12c (2007)

R.Roth, H.Hergert, N.Paar, P.Papakonstantinou

Nuclear Structure in the UCOM Framework: From Realistic Interactions to Collective Excitations

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies. 40Ca, 90Zr, 208Pb; calculated giant resonance strength distributions. Unitary correlation operator method, no-core shell model, Hartree-Fock, RPA, many-body perturbation theory. Comparison with data.

doi: 10.1016/j.nuclphysa.2007.01.008


2007SA53

Phys.Rev. C 76, 044322 (2007)

P.Sarriguren, M.K.Gaidarov, E.Moya de Guerra, A.N.Antonov

Nuclear skin emergence in Skyrme deformed Hartree-Fock calculations

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni, 70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100Kr; calculated charge density, matter density, rms radii for even isotopes. Used Skyrme-deformed Hartree-Fock+BCS calculations.

doi: 10.1103/PhysRevC.76.044322


2007VI01

Int.J.Mod.Phys. E16, 249 (2007)

X.Vinas, V.I.Tselyaev, V.B.Soubbotin, S.Krewald

Quasilocal density functional theory for nuclei including pairing correlations

NUCLEAR STRUCTURE 16O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, radii. 198,200,202,204,206,210,212Pb; calculated binding energies. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated pair gap energies. Density functional theory.

doi: 10.1142/S0218301307005697


2008BA53

Phys.Rev.Lett. 101, 252501 (2008)

D.Bazin, F.Montes, A.Becerril, G.Lorusso, A.Amthor, T.Baumann, H.Crawford, A.Estrade, A.Gade, T.Ginter, C.J.Guess, M.Hausmann, G.W.Hitt, P.Mantica, M.Matos, R.Meharchand, K.Minamisono, G.Perdikakis, J.Pereira, J.Pinter, M.Portillo, H.Schatz, K.Smith, J.Stoker, A.Stolz, R.G.T.Zegers

Production and β Decay of rp-Process Nuclei 96Cd, 98In, and 100Sn

NUCLEAR REACTIONS 9Be(112Sn, X)96Cd/98In/100Sn, E=120 MeV/nucleon; measured cross sections.

RADIOACTIVITY 96Cd, 98In, 100Sn; measured decay spectra, half-lives.

doi: 10.1103/PhysRevLett.101.252501


2008ER05

Eur.Phys.J. A 37, 81 (2008)

J.Erler, P.Klupfel, P.-G.Reinhard

A stabilized pairing functional

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142Sn; calculated average neutron-, proton-pairing gaps, binding energy, charge radius and low-lying 2+ state energy. Comparison with data.

doi: 10.1140/epja/i2008-10615-5


2008HA13

Nucl.Phys. A803, 159 (2008)

M.M.Haidari, M.M.Sharma

Sigma-omega meson coupling and properties of nuclei and nuclear matter

NUCLEAR STRUCTURE 16O, 40,48Ca, 76Ni, 90Zr, 100,116,124,132Sn, 202,208,214Pb; calculated binding energies and charge radii of spherical nuclei. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn; calculated binding energies. 202,208,214Pb; calculated charge radii and isotopic shifts. 36,38,40,42Si, 80,86,88Sr, 108,110Mo, 120Xe, 174Yb; calculated binding energies and quadrupole deformation. 90Zr, 120Sn, 208Pb; calculated GMR energies. Lagrangian model using relativistic mean field theory meson coupling.

doi: 10.1016/j.nuclphysa.2008.02.296


2008KO09

Phys.Rev. C 77, 064307 (2008)

M.Kortelainen, J.Dobaczewski, K.Mizuyama, J.Toivanen

Dependence of single-particle energies on coupling constants of the nuclear energy density functional

NUCLEAR STRUCTURE 16O, 40,48Ca, 48,56Ni, 100,132Sn, 208Pb; calculated single particle levels, regression coefficients, neutron densities, coupling constants. Energy density functional methods, Skyrme functionals.

doi: 10.1103/PhysRevC.77.064307


2008LI30

Phys.Rev. C 78, 014312 (2008); Erratum Phys.Rev. C 78, 049902 (2008)

E.Litvinova, P.Ring, V.Tselyaev

Relativistic quasiparticle time blocking approximation: Dipole response of open-shell nuclei

NUCLEAR STRUCTURE 88Sr, 90Zr, 92Mo, 100,106,114,116,120,130Sn; calculated dipole spectra, photoproduction σ, B(E1). Relativistic quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.78.014312


2008MA17

Phys.Rev. C 77, 054309 (2008)

J.Margueron, H.Sagawa, K.Hagino

Effective pairing interactions with isospin density dependence

NUCLEAR STRUCTURE 36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62Ca, 52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90Ni, 100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170Sn, 182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267Pb; calculated odd-even mass staggering, binding energies, two-neutron separation energies, pairing gaps. Comparison with experimental data. 110,150Sn; calculated particle densities, neutron Fermi momentum. Hartree-Fock-Bogoliubov model.

doi: 10.1103/PhysRevC.77.054309


2008NA25

Phys.Rev. C 78, 054301 (2008)

H.Nakada

Mean-field approach to nuclear structure with semi-realistic nucleon-nucleon interactions

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 90Zr, 132Sn, 208Pb; calculated binding energies, rms matter radii. 14,16,18,20,22,24,26,28O, 40Ca, 208Pb; calculated single-particle energies. 18,20,22,24,26O; calculated two-neutron separation energy. Comparison with experimental data. Mean-field Hartree-Fock, Hartree-Fock-Bogoliubov calculations.

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140Sn; calculated mass differences. Comparison with experimental data.

doi: 10.1103/PhysRevC.78.054301


2008PI04

Phys.Rev. C 78, 024305 (2008)

N.Pillet, J.-F.Berger, E.Caurier

Variational multiparticle-multihole configuration mixing method applied to pairing correlations in nuclei

NUCLEAR STRUCTURE 100,106,116Sn; calculated correlation energies, wave functions, levels, configurations. 100,106,112,114,116,118,120,122,124,132Sn; calculated charge radii, energies of first excited 0+ state. Variational multiparticle-multihole configuration mixing method. Comparison with experimental data. DIS parameterization of Gogny force.

doi: 10.1103/PhysRevC.78.024305


2008TS01

Phys.Rev. C 77, 024321 (2008)

N.Tsoneva, H.Lenske

Pygmy dipole resonances in the tin region

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated nucleon densities, B(E1), energy of first 1- state, configurations, pygmy-dipole resonance strengths, dipole transition densities, dipole energies, cross sections.

doi: 10.1103/PhysRevC.77.024321


2008TS02

J.Phys.(London) G35, 014047 (2008)

N.Tsoneva, H.Lenske

Low-energy dipole excitations in nuclei at the N = 50, 82 and Z = 50 shell closures as signatures for a neutron skin

NUCLEAR STRUCTURE 88Sr, 90Zr, 100,102,106,108,110,112,122,132Sn, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm; Z=50; N=50, 82; calculated one-phonon dipole transition densities, total PDR strength. Hartree-Fock-Bogoljubov (HFB) and quasiparticle-phonon model (QPM).

doi: 10.1088/0954-3899/35/1/014047


2008ZA02

Phys.Rev. C 77, 024316 (2008)

M.Zalewski, J.Dobaczewski, W.Satula, T.R.Werner

Spin-orbit and tensor mean-field effects on spin-orbit splitting including self-consistent core polarizations

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 132Sn, 208Pb; calculated single particle energies, spin-orbit splittings, grounds state energies. 16O, 40,48Ca, 56Ni, 90Zr, 100,132Sn, 208Pb; analyzed single particle levels.

doi: 10.1103/PhysRevC.77.024316


2009BE45

Phys.Rev. C 80, 064302 (2009)

M.Bender, K.Bennaceur, T.Duguet, P.-H.Heenen, T.Lesinski, J.Meyer

Tensor part of the Skyrme energy density functional. II. Deformation properties of magic and semi-magic nuclei

NUCLEAR STRUCTURE 40,48Ca, 56,68,78Ni, 80,90,96,100,110Zr, 100,120,132Sn, 186,208Pb; calculated proton and neutron Nilsson diagrams, single-particle energy spectra, deformation energy curves, isoscalar tensor energies using nuclear energy density functionals (EDF) and T22, T26, T44, T62, SLy5, SLy5+T, SLy4, SLy4T, SLy4T(min), SLy4T(self) and TZA parametrizations. Investigated impact of tensor terms in the Skyrme energy density functional on deformation properties of magic and semi-magic nuclei.

doi: 10.1103/PhysRevC.80.064302


2009BO22

Int.J.Mod.Phys. E18, 951 (2009)

L.Bonneau, J.Le Bloas, P.Quentin, J.Bartel, D.Strottman

Isospin mixing in the higher Tamm-Dancoff approximation

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated mass excess; 100Sn; calculated isospin mixing.

doi: 10.1142/S0218301309013099


2009GA39

Phys.Rev. C 80, 054305 (2009)

M.K.Gaidarov, G.Z.Krumova, P.Sarriguren, A.N.Antonov, M.V.Ivanov, E.Moya de Guerra

Momentum distributions in medium and heavy exotic nuclei

NUCLEAR STRUCTURE 50,64,78Ni, 84,86,98Kr, 100,120,136Sn; calculated proton, neutron, and total momentum distributions using self-consistent mean-field Skyrme Hartree-Fock + BCS method.

doi: 10.1103/PhysRevC.80.054305


2009HE09

Phys.Rev. C 79, 057602 (2009)

M.Hemalatha, Y.K.Gambhir, W.Haider, S.Kailas

Predicted weakening of the spin-orbit interaction with the addition of neutrons

NUCLEAR REACTIONS 76,78,80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110Zr(polarized p, p), E=39.6, 50 MeV; 96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn(polarized p, p), E=22.5, 50 MeV; calculated volume integral per nucleon, σ, analyzing powers using microscopic proton-nucleus optical potential in the framework of first-order Brueckner theory with Urbana V14 soft core interaction. Comparison with experimental data.

doi: 10.1103/PhysRevC.79.057602


2009HE14

Phys.Rev. C 80, 024312 (2009)

H.Hergert, R.Roth

Pairing in the framework of the unitary correlation operator method (UCOM): Hartree-Fock-Bogoliubov calculations

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated ground state energies, charge radii, canonical single-particle spectra, canonical and average gaps using self-consistent Hartree-Fock-Bogoliubov framework and effective interactions from the unitary correlation operator method (UCOM). Comparison with experimental data.

doi: 10.1103/PhysRevC.80.024312


2009LA11

Phys.Rev. C 79, 054615 (2009)

E.G.Lanza, F.Catara, D.Gambacurta, M.V.Andres, Ph.Chomaz

Multiphonon excitations and pygmy resonances in tin isotopes

NUCLEAR REACTIONS 100,120,132Sn(γ, γ'), E not given; calculated proton and neutron densities, isoscalar strength distributions for monopole, quadrupole and octupole states, isovector strength distributions for dipole states, transition probabilities, transition densities for low-lying dipole state for pygmy dipole resonance and giant dipole resonance. Microscopic RPA and boson expansion calculations. 120,132Sn(208Pb, X), E=500 MeV/nucleon; calculated relativistic Coulomb inelastic cross sections using coupled-channel method.

doi: 10.1103/PhysRevC.79.054615


2009LA22

Phys.Rev. C 80, 041301 (2009)

G.A.Lalazissis, S.Karatzikos, M.Serra, T.Otsuka, P.Ring

Covariant density functional theory: The role of the pion

NUCLEAR STRUCTURE 40,48Ca, 48,56Ni, 100,132Sn, 208Pb, Sn A=116-152; calculated binding energies, single particle energies and spin orbit splitting of the doublets using relativistic mean field (RMF) theory and relativistic Hartree-Fock approximation. Discussed the role of the pion in covariant density functional theory. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.041301


2009NA43

Eur.Phys.J. A 42, 565 (2009)

H.Nakada

Mean-field and RPA approaches to stable and unstable nuclei with semi-realistic interactions

NUCLEAR STRUCTURE 16O, 40,48Ca, 208Pb; calculated binding energies, rms radii. 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Sn; calculated proton single-particle levels. 16,24O; calculated levels, J, π. 208Pb; calculated B(M1). Comparison with data.

doi: 10.1140/epja/i2008-10750-y


2009RO06

Phys.Rev. C 79, 054308 (2009)

V.Rotival, T.Duguet

New analysis method of the halo phenomenon in finite many-fermion systems: First applications to medium-mass atomic nuclei

NUCLEAR STRUCTURE 54,56,58,60,62,64,66,68,70,72,74,76,78,80Cr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170Sn; calculated neutron densities, neutron canonical and two-neutron separation energies, charge and Helm rms radii for protons and neutrons, halo parameters using Hartree-Fock-Bogoliubov calculations with Skyrme plus pairing functionals.

doi: 10.1103/PhysRevC.79.054308


2009SA24

Phys.Rev.Lett. 103, 012502 (2009)

W.Satula, J.Dobaczewski, W.Nazarewicz, M.Rafalski

Isospin Mixing in Nuclei within the Nuclear Density Functional Theory

NUCLEAR STRUCTURE 40,42,44,46,48,50,52,54,56,58,60Ca, 100Sn; calculated isospin-mixing parameters. Extended mean-field approach.

doi: 10.1103/PhysRevLett.103.012502


2009TI04

Phys.Rev. C 79, 064301 (2009)

Y.Tian, Z.-y.Ma, P.Ring

Separable pairing force for relativistic quasiparticle random-phase approximation

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 122Zr, 124Mo, 126Ru, 128Pd, 130Cd, 132Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb; calculated energies of first 2+, first and second 3-, B(E2), proton average gap, and isoscalar giant monopole resonance (ISGMR) using Relativistic Hartree-Bogoliubov (RHB) and relativistic quasiparticle random phase approximation (RQRPA). Comparison with experimental data.

doi: 10.1103/PhysRevC.79.064301


2009ZA08

Phys.Rev. C 80, 064307 (2009)

M.Zalewski, P.Olbratowski, M.Rafalski, W.Satula, T.R.Werner, R.A.Wyss

Global nuclear structure effects of the tensor interaction

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 80,90Zr, 100,132Sn, 208Pb; calculated binding energies, mechanism for superdeformed structures, and potential energy curves using energy-density-functional (EDF) methods with spherical and deformed HFB approaches and SLy4T interaction. Z=1-84, N=1-130; calculated tensor contribution to nuclear binding energy. Comparison with experimental data.

doi: 10.1103/PhysRevC.80.064307


2010AF02

Phys.Rev. C 82, 034329 (2010)

A.V.Afanasjev, H.Abusara

Time-odd mean fields in covariant density functional theory: Rotating systems

NUCLEAR STRUCTURE 47V, 60Zn, 92Mo, 100Sn, 108Cd, 118Te, 118Ba, 136Nd, 142Sm, 146Gd, 152Dy, 158,160Eu, 194Pb; calculated proton-single particle energies, kinematic and dynamic moments of inertia, transition quadrupole moments and hexadecapole moments, and neutron current distributions for normal-deformed (ND), superdeformed (SD), hyperdeformed (HD) structures and terminating states in a rotating frame. Z=50-74, N=50-110; Z=42-58, N=44-78; calculated contribution of nuclear magnetism (NM) to kinematic moments of inertia for ND, SD and HD structures. Z=63, N=131-209; calculated contribution of nuclear magnetism to binding energies of odd-odd Eu nuclei. Time-odd mean field (nuclear magnetism) calculations in the framework of covariant density functional theory (CDFT).

doi: 10.1103/PhysRevC.82.034329


2010AY04

Phys.Atomic Nuclei 73, 922 (2010)

H.Aytekin, R.Baldik, E.Tel

Calculation of the ground state properties of even-even Sn isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156Sn; calculated binding energies, neutron and proton density radii, rms nuclear charge radii. Skyrme-Hartree-Fock-Bogolyubov (SHFB) methods.

doi: 10.1134/S1063778810060025


2010BA51

Eur.Phys.J. A 46, 45 (2010)

L.Batist, M.Gorska, H.Grawe, Z.Janas, M.Kavatsyuk, M.Karny, R.Kirchner, M.La Commara, I.Mukha, A.Plochocki, E.Roeckl

Systematics of Gamow-Teller beta decay "Southeast" of 100Sn

RADIOACTIVITY Z=44-50(β+), (EC); A=94-108(β+), (EC); analyzed BT transitions strengths, energy, centroid. 100,101Sn(β+), (EC); deduced T1/2, decay properties, β-quenching factor, Q-value. 100Cd(β+), (EC); calculated 100Ag T1/2, isomer transition T1/2.

doi: 10.1140/epja/i2010-11025-x


2010BH05

Phys.Rev. C 81, 044321 (2010)

A.Bhagwat, X.Vinas, M.Centelles, P.Schuck, R.Wyss

Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method

NUCLEAR STRUCTURE 40Ca, 132Sn, 208Pb; calculated coulomb potential, Wigner-Kirkwood energies and ground state energies as function of quadrupole deformation. 136,138,140,142,144,146,148,150,152,154,156Gd, 138,140,142,144,146,148,150,152,154,156,158Dy, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated Strutinsky shell corrections. 38,40,42,44,46,48,50,52Ca, 40,42,44,46,48,50,52Sc, 40,42,44,46,48,50,52,54Ti, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb; calculated binding energies, one-neutron and two-neutron separation energies. A=40-152, A=18-220; calculated binding energies for a set of 367 spherical nuclei. Classical Wigner-Kirkwood expansion method for spherical and deformed nuclei. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.044321


2010CA23

Phys.Rev.Lett. 105, 122501 (2010)

B.G.Carlsson, J.Dobaczewski

Convergence of Density-Matrix Expansions for Nuclear Interactions

NUCLEAR STRUCTURE 4He, 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated direct and exchange energies, rms deviations between the exact and approximate exchange energies, density matrix expansion.

doi: 10.1103/PhysRevLett.105.122501


2010CH34

Phys.Rev. C 82, 024321 (2010)

L.-W.Chen, Che Ming Ko, B.-A.Li, J.Xu

Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 90Zr, 100,120,132Sn, 208Pb; calculated binding energies, charge rms radii, and neutron skin thickness using Skyrme-Hartree-Fock approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024321


2010GA08

Phys.Rev. C 81, 054316 (2010)

T.Gaitanos, A.B.Larionov, H.Lenske, U.Mosel

Breathing mode in an improved transport approach

NUCLEAR STRUCTURE 12C, 100Sn; calculated rms radii, binding energies, neutron and proton density profiles, proton mean-field potentials. 12C, 56Ni, 96Ru, 124,136Sn, 208Pb; calculated rms radii. A=10-210; calculated excitation energies and widths of giant-monopole resonances (GMR).Improved relativistic Boltzmann-Uehling-Uhlenbeck (BUU) transport approach.

doi: 10.1103/PhysRevC.81.054316


2010GU13

Phys.Rev. C 82, 024319 (2010)

A.Gunther, R.Roth, H.Hergert, S.Reinhardt

Systematics of binding energies and radii based on realistic two-nucleon plus phenomenological three-nucleon interactions

NUCLEAR STRUCTURE 4He, 16,24O, 34Si, 40,48Ca, 48,56,60,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energies and binding energies per nucleon and charge radii of closed-shell nuclei. 40Ca, 90Zr; calculated single-particle spectra. Hartree-Fock calculations using MBPT, S-UCOM(SRG) and S-SRG interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.82.024319


2010MA41

Phys.Rev. C 82, 024318 (2010)

M.Matsuo, Y.Serizawa

Surface-enhanced pair transfer amplitude in quadrupole states of neutron-rich Sn isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142Sn; calculated average neutron gap, energies, B(E2) and transition densities, transition strength functions, pairing residual interactions associated with the first 2+ states. Investigated neutron pair transfer modes using QRPA based on the Skyrme-Hartree-Fock-Bogoliubov mean-fields. Comparisons with experimental data.

doi: 10.1103/PhysRevC.82.024318


2010MO13

Phys.Rev. C 81, 065803 (2010)

Ch.C.Moustakidis, T.Niksic, G.A.Lalazissis, D.Vretenar, P.Ring

Constraints on the inner edge of neutron star crusts from relativistic nuclear energy density functionals

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 196,198,200,202,204,206,208,210,212,214Pb; calculated rms radii using Hartree-Bogoliubov (RHB) model. Comparison with experimental data.

doi: 10.1103/PhysRevC.81.065803


2010NI15

Nucl.Phys. A834, 370c (2010)

D.Ni, Z.Ren

α-decay calculations of light mass nuclei above doubly magic 100Sn

RADIOACTIVITY 104,105,106,107,108,109,110Te, 106,107,108,109,110,111,112,113I, 108,109,110,111,112,113Xe, 111,112,113,114Cs, 112,113,114Ba(α); analyzed Q-value; calculated T1/2 using a generalized density-dependent cluster model. Comparison with data.

doi: 10.1016/j.nuclphysa.2010.01.042


2010OT01

Phys.Rev.Lett. 104, 012501 (2010)

T.Otsuka, T.Suzuki, M.Honma, Y.Utsuno, N.Tsunoda, K.Tsukiyama, M.Hjorth-Jensen

Novel Features of Nuclear Forces and Shell Evolution in Exotic Nuclei

NUCLEAR STRUCTURE Z=8-20, 28, 40, N=20, 40-50; 40Ca, 68Ni, 78Ni, 90Zr, 100Sn; calculated monopole matrix elements, single-particle energies for pf and sd-shells; deduced monopole-based universal interaction, shell evolution. Comparison with USD, KB3, GXPF1A interactions.

doi: 10.1103/PhysRevLett.104.012501


2010SA13

Phys.Rev. C 81, 064322 (2010)

P.Salamon, A.T.Kruppa, T.Vertse

New method for calculating shell correction

NUCLEAR STRUCTURE 16,18,20,22,24O, 20Ne, 40,48Ca, 68,78Ni, 90,122,124Zr, 100,132Sn, 146Gd, 180,208Pb; calculated neutron shell corrections using the smoothed finite-range weight function and the generalized Strutinski procedure. Comparison with the semiclassical shell correction.

doi: 10.1103/PhysRevC.81.064322


2010SH32

Eur.Phys.J. A 46, 241 (2010)

Z.-q.Sheng, Z.-z.Ren

Deformed relativistic mean-field calculations on nuclei near Z = 50 with FSUGold

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn, 108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Te, 110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,138,140,142Xe, 112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Ba; calculated binding energies, quadrupole deformation parameters, hexadecupole moments, charge radii, two-neutron separation energies. Deformed relativistic mean-field theory, comparison with experimental data.

doi: 10.1140/epja/i2010-11038-5


2010WA13

Phys.Rev. C 81, 054309 (2010)

M.Warda, X.Vinas, X.Roca-Maza, M.Centelles

Analysis of bulk and surface contributions in the neutron skin of nuclei

NUCLEAR STRUCTURE 100,132Sn, 208Pb; Z=50, A=100-176; Z=82, A=168-268; calculated halo factor, neutron and proton densities, neutron skin thicknesses using Gogny, Skyrme, and covariant nuclear mean-field interactions. 40,48Ca, 54,56,57Fe, 58,60,64Ni, 59Co, 90,96Zr, 106,116Cd, 112,116,120,124Sn, 122,124,126,128,130Te, 208Pb, 209Bi, 232Th, 238U; analyzed experimental neutron skin thicknesses with results of the covariant NL3 and FSUGold parameter sets of the nonrelativistic Skyrme SLy4 and Gogny D1S forces.

doi: 10.1103/PhysRevC.81.054309


2010ZA03

Phys.Rev. C 81, 044314 (2010)

M.Zalewski, P.Olbratowski, W.Satula

Surface-peaked effective mass in the nuclear energy density functional and its influence on single-particle spectra

NUCLEAR STRUCTURE 40Ca, 56Ni, 100Sn; calculated spin-orbit splittings, isoscalar particle densities, saturation density, binding energy, incompressibility modulus, effective mass for infinite nuclear matter with realistic nucleon-nucleon interactions using SkXc Skyrme functionals.

doi: 10.1103/PhysRevC.81.044314


2010ZA06

Int.J.Mod.Phys. E19, 794 (2010)

M.Zalewski, P.Olbratowski, W.Satula

The nuclear energy density functionals with modified radial dependence of the isoscalar effective mass

NUCLEAR STRUCTURE 40Ca, 56Ni, 100Sn; calculated spin-orbit splitting, radial dependence. Standard Skyrme energy-density functionals (EDF).

doi: 10.1142/S0218301310015242


2010ZH45

Phys.Rev. C 82, 054319 (2010)

P.W.Zhao, Z.P.Li, J.M.Yao, J.Meng

New parametrization for the nuclear covariant energy density functional with a point-coupling interaction

NUCLEAR STRUCTURE 16,18,20,22O, 18Ne, 20Mg, 34Si, 36S, 38Ar, 36,38,40,42,44,46,48,50Ca, 42,50Ti, 56,58,72Ni, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 98Cd, 100,106,108,112,116,120,122,124,126,128,130,132,134Sn, 134Te, 136Xe, 138Ba, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 206Hg, 200,202,204,206,208,210,212,214Pb, 210Po, 212Rn, 214Ra, 216Th, 218U; calculated binding energies and charge radii for spherical nuclei by PC-PK1 parametrization of energy density functional. Z=20, N=16-32; Z=28, N=26-44; Z=50, N=52-84; Z=82, N=100-132; Z=12-22, N=20; Z=30-46, N=50; Z=50-66, N=82; Z=80-92, N=126; Z=70, N=88-108; Z=92, N=138-148; deduced deviations of calculated binding energies from those in AME-2003. Z=8, N=6-22; Z=20, N=18-40; Z=28, N=28-50; Z=50, N=52-90; calculated S(2n) values. 16O, 40Ca, 132Sn, 208Pb; calculated single-particle energies. Z=50, N=56-82; Z=82, N=114-132; calculated charge radii and neutron skin thickness. 240Pu; calculated potential energy curve. 150Nd; calculated yrast states and B(E2) values. 144,146,148,150,152,154Nd; calculated E(4+)/E(2+) and B(E2) for first 2+ states. Comparison with experimental data and AME-2003.

doi: 10.1103/PhysRevC.82.054319


2011AB12

J.Phys.Soc.Jpn. 80, 104201 (2011)

M.H.E.Abu-Seileek

Doubly-Magic 100Sn Nucleus with Delta Excitation under Compression

NUCLEAR STRUCTURE 100Sn; calculated proton-, neutron-density distributions, single-particle energies of the lowest states, Δ orbitals. Hartree-Fock method.

doi: 10.1143/JPSJ.80.104201


2011AN17

Phys.Rev. C 83, 064306 (2011)

M.Anguiano, G.Co, V.De Donno, A.M.Lallena

Tensor effective interaction in self-consistent random-phase approximation calculations

NUCLEAR STRUCTURE 12C, 14,16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 90Zr, 100,114,116,132Sn, 208Pb; calculated energies of lowest 0- states, binding energies, neutron and proton rms radii, neutron and proton single-particle energies, neutron and proton energy gaps, single particle levels near the Fermi surface, level energies, J, π for N=Z nuclei with isoscalar and isovector characters. Hartree-Fock and random-phase approximation calculations with finite-range Gogny forces, with and without a tensor-isospin term.

NUCLEAR REACTIONS 12C, 40Ca, 208Pb(e, e'), E not given; calculated transverse response as a function of the effective momentum transfer using RPA wave functions obtained in fully self-consistent approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064306


2011AV04

Phys.Rev. C 83, 064316 (2011)

A.Avdeenkov, S.Goriely, S.Kamerdzhiev, S.Krewald

Self-consistent calculations of the strength function and radiative neutron capture cross section for stable and unstable tin isotopes

NUCLEAR STRUCTURE 100,110,112,114,120,124,132,136,142,150,156,166,176Sn; calculated E1 strength functions, integral characteristics of GDR versus A, giant-dipole and pygmy-dipole resonances (GDR, PDR), neutron and proton transitional densities using self-consistent microscopic theory as well as standard quasiparticle random phase approximation (QRPA, QTBA). Comparison with experimental data. Discussed properties of GDR and PDR.

NUCLEAR REACTIONS 123,131,149Sn(n, γ), E=0.001-10 MeV; calculated neutron capture cross sections obtained with E1 strength functions calculated within the QRPA, QTBA, and Kopecky-Uhl approaches.

doi: 10.1103/PhysRevC.83.064316


2011BE21

Bull.Rus.Acad.Sci.Phys. 75, 585 (2011); Izv.Akad.Nauk RAS, Ser.Fiz 75, 621 (2011)

O.V.Bespalova, T.A.Ermakova, A.A.Klimochkina, H.Koura, E.A.Romanovskii, T.I.Spasskaya

Evaluation and analysis of neutron single-particle energies in 78Ni nucleus

NUCLEAR STRUCTURE 78Ni, 90Zr, 100Sn; analyzed experimental data; calculated single-particle energies. Koura-Yamada potential.

doi: 10.3103/S1062873811040071


2011BE22

Phys.Rev. C 83, 064319 (2011)

M.Bender, P.-H.Heenen

What can be learned from binding energy differences about nuclear structure: The example of δVpn

NUCLEAR STRUCTURE Z=15-100, N=15-150; 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212Pb, 120,122,124,126,128,130,132,134,136,138,140,142,144,146,148Ba, 130,132,134,136,138,140,142,144,146,148,150,152,154Nd, 140,142,144,146,148,150,152,154,156,158,160Gd; A=130-210, N-Z=32; A=132, 168, N-Z=12-34; calculated maps of binding energy difference δVpn, deformation of mean-field ground state. 204,206Hg, 206,208Pb; calculated decomposition of δVpn into contributions from the different terms of the energy density functionals. Angular momentum and particle-number projected generator coordinate method and the Skyrme interaction SLy4Skyrme interaction SLy4. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064319


2011BH06

Int.J.Mod.Phys. E20, 1663 (2011)

A.Bhagwat, Y.K.Gambhir

Evolution of shell structure in nuclei

NUCLEAR STRUCTURE 14,16,18,20,22,24,26,28,30,32O, 54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86,88,90,92,94,96,98,100,102Ni, 80,82,84,86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154Zr, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174,176,178,180Sn, 180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,256,258,260,262,264,266,268,270,272Pb, 130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166,168,170,172,174Gd; calculated pairing energy, two-neutron separation energy. RMF calculations, comparison with experimental data.

doi: 10.1142/S0218301311019581


2011DO23

J.Phys.:Conf.Ser. 312, 092002 (2011)

J.Dobaczewski

Current Developments in Nuclear Density Functional Methods

NUCLEAR STRUCTURE 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated proton radius, binding energy, mass excess using Gogny D1S and second-order Skyrme-like EDF (energy density formalism).

doi: 10.1088/1742-6596/312/9/092002


2011GA37

Phys.Rev. C 84, 024301 (2011)

D.Gambacurta, L.Li, G.Colo, U.Lombardo, N.Van Giai, W.Zuo

Determination of local energy density functionals from Brueckner-Hartree-Fock calculations

NUCLEAR STRUCTURE 16O, 40Ca, 48Ca, 56Ni, 78Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn, 208Pb; calculated binding energies, charge radii. 208Pb; calculated energies of giant monopole (ISGMR), dipole (IVGDR), quadrupole (ISGQR) and Gamow-Teller resonances. Brueckner-Hartree-Fock approximation, Skyrme parameterization and local energy density functionals. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.024301


2011HE11

Phys.Rev. C 83, 064317 (2011)

H.Hergert, P.Papakonstantinou, R.Roth

Quasiparticle random-phase approximation with interactions from the Similarity Renormalization Group

NUCLEAR STRUCTURE 56Ca; calculated number operator response for nonspurious monopole states, isoscalar and isovector dipole strengths. 4He, 16,24O, 34Si, 40,48Ca, 56,68,78Ni, 88Sr, 90Zr, 100,114,132Sn, 146Gd, 208Pb; calculated ground-state energy per nucleon and charge radii. 16O, 40,48Ca, 100,132Sn; calculated proton and neutron spin-orbit splittings. 36,38,40,42,44,46,48,50,52,54,56,58,60Ca; calculated ground-state energies per nucleon, charge radii, odd-even mass differences, and pairing energies, isoscalar and isovector monopole, dipole and quadrupole responses, isoscalar monopole centroids and energies of the first excited 0+ states, centroids of isovector dipole response, isoscalar quadrupole centroids and energies of the first 2+ states. 40,48Ca; calculated single particle energies. 120Sn; calculated canonical single-neutron energies, isoscalar monopole response, running energy-weighted sums, centroid energies of the isoscalar monopole strength distribution. 50Ca; calculated proton and neutron transition densities for monopole peaks. 36,44Ca; calculated proton and neutron dipole transition densities. 54Ca; calculated proton and neutron quadrupole transition densities for a pygmy and a GQR mode. Quasiparticle random phase approximation built on the HFB ground states. Comparison with experimental data.

doi: 10.1103/PhysRevC.83.064317


2011KV01

Int.J.Mod.Phys. E20, 281 (2011)

J.Kvasil, V.O.Nesterenko, W.Kleinig, D.Bozik, P.-G.Reinhard

Skyrme-Hartree-Fock description of the dipole strength in neutron-rich tin isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,160,162,164,166Sn; analyzed low-energy E1 strengths, neutron and proton quadrupole deformations.

doi: 10.1142/S0218301311017636


2011LA22

Phys.Rev. C 84, 064602 (2011)

E.G.Lanza, A.Vitturi, M.V.Andres, F.Catara, D.Gambacurta

Excitations of pygmy dipole resonances in exotic and stable nuclei via Coulomb and nuclear fields

NUCLEAR REACTIONS 132Sn(α, α'), (40Ca, 40Ca'), (48Ca, 48Ca'), E=30, 60, 100 MeV; 208Pb(17O, 17O'), E=20, 50 MeV; calculated form factors for PDR states and GDR, partial wave cross sections, differential cross sections. 100Sn, 120Sn, 132Sn, 208Pb; calculated isovector strength distributions B(E1), RPA transition strengths for low-lying states. Hartree-Fock plus RPA random phase approximation (RPA), with Skyrme interaction.

doi: 10.1103/PhysRevC.84.064602


2011LE06

Prog.Part.Nucl.Phys. 66, 368 (2011)

H.Lenske, S.E.A.Orrigo, N.Tsoneva

Density functional theory for reactions of astrophysical interest

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated electric dipole strength distributions, B(E1), nuclear skin thickness. QRPA results.

NUCLEAR REACTIONS 138Ba(γ, X), E<9 mEV; calculated photo-absorption σ. QRPA results.

doi: 10.1016/j.ppnp.2011.01.036


2011LE21

Phys.Rev. C 84, 014310 (2011)

J.Le Bloas, M.Koh, P.Quentin, L.Bonneau, J.I.A.Ithnin

Exact Coulomb exchange calculations in the Skyrme-Hartree-Fock-BCS framework and tests of the Slater approximation

NUCLEAR STRUCTURE 16O, 24Mg, 40,48Ca, 48Cr, 48,56Ni, 90Zr, 106Mo, 100,132Sn, 174,176,178Hf, 206,208,210Pb, 238U, 298Fl, 310126; Z=20-34, N=28; Z=40-58, N=64; Z=52-62, N=78; Z=68-80, N=106; Z=76-88, N=126; Z=86-100, N=146; calculated Coulomb interaction and fission properties for even-even nuclei within the Skyrme-Hartree-Fock/Bardeen-Cooper-Schrieffer approach. Pairing correlations. 70Se; calculated deformation energy curves. 212Po, 214Rn, 216Ra, 218Th; calculated α decay properties.

doi: 10.1103/PhysRevC.84.014310


2011LI30

Phys.Rev. C 84, 014305 (2011)

E.V.Litvinova, A.V.Afanasjev

Dynamics of nuclear single-particle structure in covariant theory of particle-vibration coupling: From light to superheavy nuclei

NUCLEAR STRUCTURE 56Ni, 100,132Sn, 208Pb; calculated single particle spectra and strength distributions, proton and neutron shell gaps, spin-orbit and pseudospin doublet splitting energies. 55Co, 55,57Ni, 57Cu, 99,131In, 99,101,131,133Sn, 101,133Sb, 207Tl, 207,209Pb, 209Bi; calculated spectroscopic factors in single-particle transfer reactions. 292120; calculated single-particle spectrum. Relativistic particle-vibration model in combination with the cranked relativistic mean-field (CRMF) approach. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.014305


2011NI06

Phys.Rev. C 83, 034305 (2011)

N.Nikolov, N.Schunck, W.Nazarewicz, M.Bender, J.Pei

Surface symmetry energy of nuclear energy density functionals

NUCLEAR STRUCTURE 192,194Hg, 192,194,196Pb, 236,238U, 240Pu, 242Cm; calculated deformation energies versus deformation parameter, 0+ superdeformed bandhead energies in Hg and Pb nuclei, and fission isomers in actinides. 236,248,260,270,298U; calculated contributions of the Coulomb, surface symmetry, curvature, and surface terms of fission isomers. 100Sn, 100Zr; calculated contribution to the total deformation energy per nucleon. Nuclear energy density functional (EDF) theory applied to examine the role of the surface symmetry energy in nuclei using various Skyrme energy density functionals (EDFs). Comparison with experimental data.

doi: 10.1103/PhysRevC.83.034305


2011PA12

Eur.Phys.J. A 47, 14 (2011)

P.Papakonstantinou, V.Yu.Ponomarev, R.Roth, J.Wambach

Isoscalar dipole coherence at low energies and forbidden E1 strength

NUCLEAR STRUCTURE 16O, 40Ca, 56Ni, 100Sn; calculated ISD, E1 response, GDR peak energy, B(E1), γ transition strengths, transition densities using RPA with finite-range forces.

doi: 10.1140/epja/i2011-11014-7


2011RO50

Phys.Rev. C 84, 054309 (2011); Erratum Phys.Rev. C 93, 069905 (2016)

X.Roca-Maza, X.Vinas, M.Centelles, P.Ring, P.Schuck

Relativistic mean-field interaction with density-dependent meson-nucleon vertices based on microscopical calculations

NUCLEAR STRUCTURE 16,18,26,28,30Ne, 20,32Mg, 34,36Si, 36S, 38,40Ar, 36,38,40,42,44,46,48,50,52Ca, 40,42,44,48,50,52,54Ti, 46,52Cr, 54,64,66,68Fe, 54,56,58,66,68,70,72Ni, 58,70,72Zn, 82Ge, 84,86Se, 86,88Kr, 86,88,90Sr, 86,88,90,92Zr, 86,88,90,92,94Mo, 94,96Ru, 96,98Pd, 98,100Cd, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 126,128,130,132,134,136Te, 134,136,138Xe, 136,138,140Ba, 138,140,142,144Ce, 140,142,144Nd, 142,144,146Sm, 146Gd, 148Dy, 150Er, 152Yb, 170,172Pt, 172,174,176,204,206Hg, 178,180,182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 204,206,208,210,212,214,216Po, 208,210,212,214,216Rn, 210,212,214,216,218Ra, 212,214,216,218,220Th, 224U; analyzed binding energies, and charge radii. 100,132,176Sn; calculated isoscalar, isovector parts of the spin-orbit potential, spin orbit splitting. Relativistic Brueckner theory, high-precision density functional DD-MEδ with density-dependent meson-nucleon couplings. Comparison with experimental data.

doi: 10.1103/PhysRevC.84.054309


2011SA06

Phys.Rev. C 83, 025801 (2011)

P.Sarriguren

Stellar weak decay rates in neutron-deficient medium-mass nuclei

RADIOACTIVITY 50,52,54Ni, 56,58,60Zn, 62,64,66Ge, 66,68,70Se, 70,72,74Kr, 74,76,78Sr, 80,82,84Zr, 84,86,88Mo, 88,90,92Ru, 92,94,96Pd, 96,98,100Cd, 100,102,104Sn(β+), (EC); calculated G-T strength distributions, and decay rates of waiting point and neighboring nuclides under stellar density and temperature conditions in rp process using self-consistent deformed Skyrme-Hartree Fock + BCS + quasiparticle random-phase-approximation (QRPA) approach.

doi: 10.1103/PhysRevC.83.025801


2011SA07

Acta Phys.Pol. B42, 415 (2011)

W.Satula, J.Dobaczewski, W.Nazarewicz, M.Rafalski

Isospin Mixing in Nuclei around N∼Z and the Superallowed β -decay

NUCLEAR STRUCTURE 40Ca, 42Sc, 80Zr, 100Sn; calculated isospin impurities, isospin-breaking correction.


2011SA14

Int.J.Mod.Phys. E20, 244 (2011)

W.Satula, J.Dobaczewski, W.Nazarewicz, M.Borucki, M.Rafalski

Isospin mixing in the vicinity of the N = Z line

NUCLEAR STRUCTURE 14N, 40Ca, 100Sn; calculated kernels, isospin impurities, symmetry energies.

doi: 10.1142/S0218301311017582


2011SH32

Phys.Rev. C 84, 044317 (2011)

H.Shimoyama, M.Matsuo

Anomalous pairing vibration in neutron-rich Sn isotopes beyond the N=82 magic number

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150Sn; calculated monopole neutron pair transfer strengths, neutron pair transition strength functions, neutron transition densities. Dependence of anomalous pair vibration on the effective pairing interaction. Skyrme-Hartree-Fock-Bogoliubov mean-field model, continuum quasiparticle random phase approximation.

doi: 10.1103/PhysRevC.84.044317


2011TI11

Phys.Rev. C 84, 054313 (2011)

N.K.Timofeyuk

Properties of one-nucleon overlap functions for A ≥ 16 double-closed-shell nuclei in the source-term approach

NUCLEAR STRUCTURE 16,17,24O, 25F, 40,41,48,49,60Ca, 41,49Sc, 56,57,78Ni, 100,132,133Sn, 208,209Pb, 209Bi; calculated spectroscopic factors, rms radii, asymptotic normalization coefficients for one-nucleon removal and addition reactions. Source term approach, and independent-particle model. Comparison with experimental data for one nucleon knockout reactions.

doi: 10.1103/PhysRevC.84.054313


2012BH10

Phys.Rev. C 86, 044316 (2012)

A.Bhagwat, X.Vinas, M.Centelles, P.Schuck, R.Wyss

Microscopic-macroscopic approach for binding energies with the Wigner-Kirkwood method. II. Deformed nuclei

NUCLEAR STRUCTURE 63Ge, 65As, 67Se, 71,80,82,84,86,88,90,92,94,96,98,100,102,104Kr, 76,78,80,82,84,86,88,90,92,94,96,98,100,102Sr, 84,86,88,90,92,94,96,98,100,102,104,106,108Zr, 86,88,90,92,94,96,98,100,102,104,106,108,110Mo, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 140,142,144,146,148,150,152,154,156,158,160,162Gd, 186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Po; calculated S2n, β2, Sp, binding energy using Microscopic-macroscopic model with Wigner-Kirkwood expansion. Comparison with experimental data. Z, N>7; deduced difference between the calculated and the corresponding experimental binding energies for 561 nuclides.

RADIOACTIVITY 279,280Rg, 282,283Nh, 287,288,289Fl, 287,288Mc, 291,292,293Lv, 294Og(α); calculated Q values and half-lives. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.044316


2012CA27

Phys.Rev. C 86, 014307 (2012)

B.G.Carlsson, J.Toivanen, A.Pastore

Collective vibrational states within the fast iterative quasiparticle random-phase approximation method

NUCLEAR STRUCTURE 18O; calculated levels, J, π, B(E0), B(E1), B(E2). 38,40,42,44,46,48,50,52,54Ca, 52,54,56,58,60,62,64,66,68,70,72,74,76,78,80Ni, 182,184,186,188,190,192,194,196,198,200,202,204,206,208,210,212,214Pb, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138Sn; calculated levels, J, π, B(E2), B(E3), two-quasi particle components for first 2+ and 3- states. Quasiparticle random-phase approximation (QRPA) calculations using iterative non-Hermitian Arnoldi diagonalization procedures. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.014307


2012CH05

J.Phys.(London) G39, 035104 (2012)

L.-W.Chen, J.-Z.Gu

Correlations between the nuclear breathing mode energy and properties of asymmetric nuclear matter

NUCLEAR STRUCTURE 208Pb, 100,132Sn; calculated nuclear isoscalar giant monopole resonance (ISGMR) energies, response functions; deduced correlations between ISGMR and symmetry energies. Microscopic HF calculations.

doi: 10.1088/0954-3899/39/3/035104


2012CO04

Phys.Rev. C 85, 024322 (2012)

G.Co, V.De Donno, P.Finelli, M.Grasso, M.Anguiano, A.M.Lallena, C.Giusti, A.Meucci, F.D.Pacati

Mean-field calculations of the ground states of exotic nuclei

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 100,114,116,132Sn; calculated binding energies, single particle energies, rms charge radii, neutron skin thickness. Mean-field approach, nonrelativistic Hartree-Fock, relativistic Hartree calculations. Comparison with experimental data.

NUCLEAR REACTIONS 40,48,52,60Ca(e, e'p), (e, e), E=483.2 MeV; calculated reduced cross sections, elastic scattering cross sections, neutron, proton and matter distributions, Mean-field approach, nonrelativistic Hartree-Fock, relativistic Hartree calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.024322


2012GR07

Phys.Rev. C 85, 034317 (2012)

M.Grasso, D.Lacroix, A.Vitturi

Pair-transfer probability in open- and closed-shell Sn isotopes

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144Sn; calculated two nucleon transfer (removal or addition) strength from ground-state to ground-state, neutron Fermi energy, entropy, pairing gap for mixed pairing case and pure surface case. Canonical basis formulation, and Hartree-Fock-Bogoliubov (HFB) theory. Discussed role of particle number restoration.

doi: 10.1103/PhysRevC.85.034317


2012HI07

Nature(London) 486, 341 (2012)

C.B.Hinke, M.Bohmer, P.Boutachkov, T.Faestermann, H.Geissel, J.Gerl, R.Gernhauser, M.Gorska, A.Gottardo, H.Grawe, J.L.Grebosz, R.Krucken, N.Kurz, Z.Liu, L.Maier, F.Nowacki, S.Pietri, Zs.Podolyak, K.Sieja, K.Steiger, K.Straub, H.Weick, H.-J.Wollersheim, P.J.Woods, N.Al-Dahan, N.Alkhomashi, A.Atac, A.Blazhev, N.F.Braun, I.T.Celikovic, T.Davinson, I.Dillmann, C.Domingo-Pardo, P.C.Doornenbal, G.de France, G.F.Farrelly, F.Farinon, N.Goel, T.C.Habermann, R.Hoischen, R.Janik, M.Karny, A.Kaskas, I.M.Kojouharov, Th.Kroll, Y.Litvinov, S.Myalski, F.Nebel, S.Nishimura, C.Nociforo, J.Nyberg, A.R.Parikh, A.Prochazka, P.H.Regan, C.Rigollet, H.Schaffner, C.Scheidenberger, S.Schwertel, P.-A.Soderstrom, S.J.Steer, A.Stolz, P.Strmen

Superallowed Gamow-Teller decay of the doubly magic nucleus 100Sn

RADIOACTIVITY 100Sn(β+), (EC) [from Be(124Xe, X)100Sn, E = 1 GeV/nucleon]; measured decay products, Eγ, Iγ, Eβ, Iβ. 100In; deduced T1/2, log ft, Gamow-Teller strength, energy levels, J, π, distribution of positron energies. Comparison with available data, large scale shell model calculations.

doi: 10.1038/nature11116


2012LO08

Phys.Rev. C 86, 014313 (2012)

G.Lorusso, A.Becerril, A.Amthor, T.Baumann, D.Bazin, J.S.Berryman, B.A.Brown, R.H.Cyburt, H.L.Crawford, A.Estrade, A.Gade, T.Ginter, C.J.Guess, M.Hausmann, G.W.Hitt, P.F.Mantica, M.Matos, R.Meharchand, K.Minamisono, F.Montes, G.Perdikakis, J.Pereira, M.Portillo, H.Schatz, K.Smith, J.Stoker, A.Stolz, R.G.T.Zegers

β-delayed proton emission in the 100Sn region

RADIOACTIVITY 89Ru, 91,92Rh, 93Pd, 95,96,96mAg, 96,97,97mCd, 98,98m,99,100In, 100,101Sn[from 9Be(112Sn, X), E=140 MeV/nucleon](β+), (EC), (β+p); measured Eγ, Iγ, β spectra, E(p), I(p), βγ-coin, βp-coin, γβp-coin, fragment yields, half-lives, β-delayed proton emission branching ratios using NSCL Beta Counting System and SeGA array. Discussed rp-process implications. Comparison with previous studies and theoretical calculations. X-ray bursts calculations.

doi: 10.1103/PhysRevC.86.014313


2012LO13

Prog.Theor.Phys.(Kyoto), Suppl. 196, 39 (2012)

U.Lombardo

NN Effective Interaction from the Brueckner Theory and Applications to Nuclear Systems

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,78Ni, 100,132Sn, 208Pb; calculated binding energies, charge radii, isospin splitting.

doi: 10.1143/PTPS.196.39


2012MA16

Phys.Rev. C 85, 054313 (2012)

T.Marketin, G.Martinez-Pinedo, N.Paar, D.Vretenar

Role of momentum transfer in the quenching of Gamow-Teller strength

NUCLEAR REACTIONS 90Zr(p, n), (n, p), E=300 MeV; analyzed differential cross section data; deduced pn-RQRPA strengths in β- and β+ channels obtained with the Gamow-Teller (GT) operator, GT+IVSM operator, and full L=0 operator, momentum transfer. Relativistic Hartree-Bogoliubov model. Comparison with Ikeda sum rule.

NUCLEAR STRUCTURE 48Ca, 90Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150Sn, 208Pb; analyzed L=0 β- strength functions, GT and IVSM centroids using Relativistic Hartree-Bogoliubov (RHB) plus proton-neutron relativistic quasiparticle random-phase approximation (pn-RQRPA) with GT operator, the GT plus isovector spin monopole (IVSM) mode term, and the operator that contains the full momentum-transfer dependence.

doi: 10.1103/PhysRevC.85.054313


2012NA22

Prog.Theor.Phys.(Kyoto), Suppl. 196, 371 (2012)

H.Nakada

Mean-Field and RPA Approaches to Stable and Unstable Nuclei with Semi-Realistic NN Interaction

NUCLEAR STRUCTURE 208Pb, 90Zr, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130Sn; calculated B(E2), energy levels, J, π. M3Y-type semi-realistic NN interactions in the mean-field and RPA framework.

doi: 10.1143/PTPS.196.371


2012RO26

Phys.Rev. C 86, 031306 (2012)

X.Roca-Maza, G.Colo, H.Sagawa

New Skyrme interaction with improved spin-isospin properties

NUCLEAR STRUCTURE 16O, 40,48Ca, 56,68Ni, 90Zr, 100,132Sn, 208Pb; calculated binding energies, charge radii, proton spin-orbit splittings using the Skyrme-Aizu-Milano (SAMi) functional. 48Ca, 90Zr, 208Pb; calculated Gamow-Teller (GT) strength distributions and spin dipole resonance (SDR) strength functions using several Skyrme interactions. New Skyrme energy density functional proposed. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.031306


2012SM05

Phys.Rev. C 86, 034314 (2012)

N.A.Smirnova, K.Heyde, B.Bally, F.Nowacki, K.Sieja

Nuclear shell evolution and in-medium NN interaction

NUCLEAR STRUCTURE 16,18,20,22,28,36O, 24Ne, 26Mg, 34,42Si, 36,44S, 40,42,44,46,48Ca, 50Ti, 52Cr, 54Fe, 56Ni, 80,82,84,86,88,90Zr, 92Mo, 94Ru, 96Pd, 98Cd, 100Sn; calculated neutron and proton effective single-particle energies (ESPEs) based on an effective two-body shell-model interaction in sdpf shell-model space. Role of central and tensor terms in understanding evolution of the shell gaps at N=20 and N=28.

doi: 10.1103/PhysRevC.86.034314


2012UR03

Phys.Rev. C 85, 034322 (2012)

M.Urban

Pygmy resonance and torus mode within Vlasov dynamics

NUCLEAR STRUCTURE 16,18,20,22O, 100,116,132Sn; calculated electric dipole moment, E1 strength, transition densities and velocity fields for GDR and pygmy dipole resonances. Semiclassical Thomas-Fermi (TF) plus Vlasov approach.

doi: 10.1103/PhysRevC.85.034322


2012VO03

Phys.Rev. C 85, 054319 (2012)

D.Voitenkov, S.Kamerdzhiev, S.Krewald, E.E.Saperstein, S.V.Tolokonnikov

Self-consistent calculations of quadrupole moments of the first 2+ states in Sn and Pb isotopes

NUCLEAR MOMENTS 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134Sn, 190,192,194,196,198,200,202,204,206,208Pb; calculated static quadrupole moments of first 2+ states. Ground state correlations. Dependence of quadrupole moment on neutron access. Self-consistent calculations based on quasiparticle random-phase approximation (QRPA) and energy density functionals. Comparison with experimental data.

doi: 10.1103/PhysRevC.85.054319


2012WA32

Phys.Rev. C 86, 054309 (2012)

K.Washiyama, K.Bennaceur, B.Avez, M.Bender, P.-H.Heenen, V.Hellemans

New parametrization of Skyrme's interaction for regularized multireference energy density functional calculations

NUCLEAR STRUCTURE 40,48Ca, 56Ni, 100,132Sn, 208Pb; calculated binding energy, charge radii. 24Mg, 74Kr, 80,100Zr, 186Pb; calculated potential energy curves versus β2. 240Pu; calculated fission barrier versus β2. 194Hg; calculated dynamical moment of inertia of superdeformed band. 249Bk, 251Cf; calculated one-quasiparticle levels. Z=20, A=36-52; Z=28, A=54-72; Z=50, A=100-134; Z=82, A=180-214; N=20, Z=10-22; N=50, Z=30-50; N=82, Z=48-70; N=126, Z=80-92; calculated binding energies, charge radii for even-even nuclei. Energy density functional calculations for spherical and deformed nuclei with new Skyrme parametrization with integer powers of the density. Comparison with experimental data.

doi: 10.1103/PhysRevC.86.054309


2012YU01

Nucl.Phys. A877, 35 (2012)

E.Yuksel, E.Khan, K.Bozkurt

Analysis of the neutron and proton contributions to the pygmy dipole mode in doubly magic nuclei

NUCLEAR STRUCTURE 16,24O, 40,48,70Ca, 56,68,78Ni, 100,132Sn, 208Pb; calculated GDR, Pygmy dipole strength distribution using self-consistent HF+RPA with Skyrme interactions. Comparison with data.

doi: 10.1016/j.nuclphysa.2012.01.006


2013AV03

Eur.Phys.J. A 49, 76 (2013)

B.Avez, C.Simenel

Structure and direct decay of Giant Monopole Resonances

NUCLEAR STRUCTURE 16O; calculated, analyzed giant monopole resonance, monopole moment time evolution, strength function. Compared with available data. 100,132Sn; calculated, analyzed GMR (giant monopole resonance) strength function. RPA with time-dependent energy density functional method in linear response regime.

doi: 10.1140/epja/i2013-13076-9


2013BH06

Nucl.Phys. A913, 1 (2013)

R.Bhattacharya

Tensor interaction and its influence on evolution of nuclear shells

NUCLEAR STRUCTURE 40,48Ca, 56Ni, 90Zr, 100,132Sn, 208Pb; calculated levels, J, π, shell gaps for Z=8, 20, 28 and N=8, 20, 28 chains, spin-orbit splitting of shell model states near 132Sn and 208Pb using Hartree-Fock theory with Skyrme density dependent, tensor interaction and spin-orbit; deduced parameters. Compared with available data.

doi: 10.1016/j.nuclphysa.2013.05.006


2013BR17

Phys.Rev.Lett. 111, 232502 (2013)

B.A.Brown

Constraints on the Skyrme Equations of State from Properties of Doubly Magic Nuclei

NUCLEAR STRUCTURE 16,24O, 34Si, 40,48Ca, 48,68Ni, 88Sr, 100,132Sn, 208Pb; analyzed properties of doubly magic nuclei; deduced the value of the neutron equation of state and Skyrme equations of state on the neutron skin. Comparison with available data.

doi: 10.1103/PhysRevLett.111.232502


2013CA08

Phys.Rev. C 87, 054303 (2013)

B.G.Carlsson, J.Toivanen, U.von Barth

Fluctuating parts of nuclear ground-state correlation energies

NUCLEAR STRUCTURE 14,16,18,20,22O, 36,38,40,42,44,46,48,50Ca, 52,54,56,58,60,62,64,66,68,70,72,74,76,78Ni, 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132,134,136Sn; calculated correlations and fluctuating parts in ground-state binding energies, octupole shape vibrations using QRPA and MBPT2. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.054303


2013CO05

Phys.Rev. C 87, 034305 (2013)

G.Co, V.De Donno, M.Anguiano, A.M.Lallena

Pygmy and giant electric dipole responses of medium-heavy nuclei in a self-consistent random-phase approximation approach with a finite-range interaction

NUCLEAR STRUCTURE 16,22,24,28O, 40,48,52,60Ca, 48,56,68,78Ni, 90Zr, 100,114,116,132Sn, 208Pb; calculated photoabsorption σ(E), proton and neutron transition densities, centroids of pygmy dipole and giant dipole resonances (PDR, GDR). Gogny interaction in a self-consistent Hartree-Fock plus random phase approximation method. Comparison with experimental data, and for details of PDR and GDR structures.

doi: 10.1103/PhysRevC.87.034305


2013DU07

Phys.Scr. T154, 014002 (2013)

J.Dudek, B.Szpak, B.Fornal, A.Dromard

Predictive power and theoretical uncertainties of mathematical modelling for nuclear physics

NUCLEAR STRUCTURE 16O, 40,48Ca, 56Ni, 90Zr, 100,132Sn, 208Pb; calculated level energies, J, π, proton radius and their uncertainties. Comparison with available data.

doi: 10.1088/0031-8949/2013/T154/014002


2013FA01

Prog.Part.Nucl.Phys. 69, 85 (2013)

T.Faestermann, M.Gorska, H.Grawe

The structure of 100Sn and neighbouring nuclei

NUCLEAR STRUCTURE 100,108,110,112,114Sn; compiled experimental data, B(E2), shell model results.

doi: 10.1016/j.ppnp.2012.10.002


2013IS09

Phys.Atomic Nuclei 76, 828 (2013)

V.I.Isakov

Global properties of nuclei from 100Sn to 132Sn

NUCLEAR STRUCTURE 100,102,104,106,108,110,112,114,116,118,120,122,124,126,128,130,132Sn; calculated binding energies, two-neutron separation energy, proton separation energy, rms radii for protons and neutrons, occupancies, B(E2), energy levels, J, π. HF+BCS procedure.

doi: 10.1134/S1063778813070077


2013KV01

Phys.Scr. T154, 014019 (2013)

J.Kvasil, A.Repko, V.O.Nesterenko, W.Kleinig, P.-G.Reinhard, N.Lo Iudice

Toroidal, compression and vortical dipole strengths in 124Sn

NUCLEAR STRUCTURE 100,124,132Sn; calculated toroidal, vortical and compression dipole strength functions. Self-consistent separable Skyrme-RPA approach.

doi: 10.1088/0031-8949/2013/T154/014019


2013NA03

Phys.Rev. C 87, 014336 (2013)

H.Nakada

Semi-realistic nucleon-nucleon interactions with improved neutron-matter properties

NUCLEAR STRUCTURE 16,24O, 40,48Ca, 90Zr, 100,132Sn, 208Pb; calculated binding energies, rms matter radii, single-particle energies, proton and neutron rms radii. Z=8, N=7-18; Z=20, N=17-50; Z=28, N=24-62; Z=50, N=53-92; Z=82, N=97-134; calculated S(n). N=20, Z=14-28; N=28, Z=16-30; N=50, Z=28-50; N=82, Z=47-72; N=126, Z=70-94; calculated S(p). Z=82, N=116-134; calculated isotope shifts. Discussed tensor-force effects on shell structure. HFB calculations with new parameter sets of semi-realistic effective interactions. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.014336


2013NI09

Phys.Rev. C 87, 051303 (2013)

Z.M.Niu, Y.F.Niu, Q.Liu, H.Z.Liang, J.Y.Guo

Nuclear β+/EC decays in covariant density functional theory and the impact of isoscalar proton-neutron pairing

RADIOACTIVITY 32,34Ar, 36,38Ca, 40,42Ti, 46,48,50Fe, 50,52,54Ni, 56,58Zn, 96,98,100Cd, 100,102,104Sn(β+), (EC); calculated half-lives, B(GT). Self-consistent proton-neutron QRPA with relativistic Hartree-Bogoliubov (QRPA+RHB) calculations. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.051303


2013RO02

Phys.Rev. C 87, 014304 (2013)

X.Roca-Maza, M.Centelles, F.Salvat, X.Vinas

Electron scattering in isotonic chains as a probe of the proton shell structure of unstable nuclei

NUCLEAR STRUCTURE 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, 34Ca, 70Ca, 84Se, 90Zr, 100Sn, 122Zr, 140Ce, 146Gd, 154Hf; calculated proton and neutron single-particle levels, and charge densities. Relativistic nuclear mean-field interaction G2.

NUCLEAR REACTIONS 122Zr, 140Ce, 154Hf(e, e), E=250, 500 MeV; calculated DWBA and Mott differential σ(θ, E). 22O, 24Ne, 26Mg, 28Si, 30S, 32Ar, 34Ca, 70Ca, 74Cr, 78Ni, 80Zn, 82Ge, 84Se, 86Kr, 88Sr, 90Zr, 92Mo, 94Ru, 96Pd, 98Cd, 100Sn, 120Sr, 122Zr, 128Pd, 132Sn, 136Xe, 140Ce, 142Nd, 144Sm, 146Gd, 148Dy, 150Er, 152Yb, 154Hf(e, e), E=500 MeV; calculated Helm model parameters, mass-number dependence of Helm parameters, square charge form factors as function of Helm parameters in DWBA. Dirac partial-wave approach, and covariant mean-field model G2.

doi: 10.1103/PhysRevC.87.014304


2013WA09

Phys.Rev. C 87, 034327 (2013)

N.Wang, L.Ou, M.Liu

Nuclear symmetry energy from the Fermi-energy difference in nuclei

NUCLEAR STRUCTURE 16,22O, 22,42Si, 40,48,60Ca, 42Ti, 56,68,78Ni, 130Cd, 100,132,134Sn, 134Te, 144Sm, 182,208Pb; calculated neutron-proton Fermi-energy difference, nuclear symmetry energy, neutron-skin thickness. Skyrme energy density functionals and nuclear masses, with 54 Skyrme parameter sets. Comparison with experimental data.

doi: 10.1103/PhysRevC.87.034327


2013YA23

Chin.Phys.C 37, 124102 (2013)

D.Yang, L.-G.Cao, Z.-Y.Ma

Collective multipole excitations of exotic nuclei in relativistic continuum random phase approximation

NUCLEAR STRUCTURE 34,40,48,60Ca, 16,28O, 100,132Sn; calculated isoscalar and isovector collective multipole excitations, strength functions. Comparison with available data.

doi: 10.1088/1674-1137/37/12/124102


2013YU05

Eur.Phys.J. A 49, 124 (2013)

E.Yuksel, E.Khan, K.Bozkurt

The soft Giant Monopole Resonance as a probe of the spin-orbit splitting

NUCLEAR STRUCTURE 100,132Sn, 208Pb; calculated isoscalar monopole strength distribution using Skyrme HF plus RPA model.

doi: 10.1140/epja/i2013-13124-6


2017WA10

Chin.Phys.C 41, 030003 (2017)

M.Wang, G.Audi, F.G.Kondev, W.J.Huang, S.Naimi, X.Xu

The AME2016 atomic mass evaluation (II). Tables, graphs and references

ATOMIC MASSES A=1-295; compiled, evaluated atomic masses data.

doi: 10.1088/1674-1137/41/3/030003


2019LU08

Phys.Rev.Lett. 122, 222502 (2019)

D.Lubos, J.Park, T.Faestermann, R.Gernhauser, R.Krucken, M.Lewitowicz, S.Nishimura, H.Sakurai, D.S.Ahn, H.Baba, B.Blank, A.Blazhev, P.Boutachkov, F.Browne, I.Celikovic, G.de France, P.Doornenbal, Y.Fang, N.Fukuda, J.Giovinazzo, N.Goel, M.Gorska, S.Ilieva, N.Inabe, T.Isobe, A.Jungclaus, D.Kameda, Y.K.Kim, I.Kojouharov, T.Kubo, N.Kurz, Y.K.Kwon, G.Lorusso, K.Moschner, D.Murai, I.Nishizuka, Z.Patel, M.M.Rajabali, S.Rice, H.Schaffner, Y.Shimizu, L.Sinclair, P.-A.Soderstrom, K.Steiger, T.Sumikama, H.Suzuki, H.Takeda, Z.Wang, N.Warr, H.Watanabe, J.Wu, Z.Xu

Improved Value for the Gamow-Teller Strength of the 100Sn Beta Decay

RADIOACTIVITY 100Sn(β+) [from 9Be(124Xe, X), E=345 MeV/nucleon]; measured decay products, Eγ, Iγ, Eβ, Iβ; deduced Gamow-Teller Strength, Q-value, T1/2. Comparison with available data.

doi: 10.1103/PhysRevLett.122.222502


2019MO01

At.Data Nucl.Data Tables 125, 1 (2019)

P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers

Nuclear properties for astrophysical and radioactive-ion-beam applications (II)

NUCLEAR STRUCTURE Z=8-136; calculated the ground-state odd-proton and odd-neutron spins and parities, proton and neutron pairing gaps, one- and two-neutron separation energies, quantities related to β-delayed one- and two-neutron emission probabilities, average energy and average number of emitted neutrons, β-decay energy release and T1/2 with respect to Gamow-Teller decay with a phenomenological treatment of first-forbidden decays, one- and two-proton separation energies, and α-decay energy release and half-life.

doi: 10.1016/j.adt.2018.03.003