Reactor CEvNS Detection using Low-threshold Detector Technology Developed for Dark Matter Searches

IBD vs CEvNS: Rate, Threshold, and Background

Prompt β^+ , delayed neutron for full reconstruction. Very good background rejection. Need E_v>1.8 MeV

Both Weak Interaction Processes, but Coherent v-N Scattering $\Rightarrow A^2$ enhancement

 χ^0/ν

 $E_R \approx m^2 v^2/m_{Ge} \approx 0$ -few keV recoil energy

Detected through ionization/phonon/light

This provides the ~1000x higher rate Also, allows access to sub-IBD v spectrum

Determine reactor ON/OFF. Also, fuel type if measured with high statistical significance

Why is Reactor CEvNS not discovered yet?

Indistinguishable

 $|M_{if}|^2 \propto A^2$

Kg-scale MINER germanium/silicon cryogenic detector ER/NR discrimination

3000-kg PROSPECT liquid scintillation detector with PSD

The Interplay Between Threshold and Background

is helping us reduce background and improve ER/NR rejection for discovery

MIVER Experiment -Generic to most expts

Top View

Key Features

- 1. Low-threshold (<100 eV) with sensitivity to CEvNS
- 2. Proximity to core (rate enhancement)
- 3. Once detected, physics program involves precision measurement for new physics sterile-v, NSI, etc
- 4. Moveable Core tests short baseline oscillation

MIvER Experiment -Generic to most expts

CEvNS Detector Technologies

- Most Dark Matter detectorss now in use for CEvNS synergy in low threshold and background reduction techniques
- Fundamentally, phonon detectors (with SQUIDs) can access lower recoil thresholds due to lower noise and no Lindhard
- CCDs have shown very low noise and low-threshold too
- Any detector (PPC, CCD) using charge will suffer from Lindhard

Light (quenched)	Ionization (quenched)	Phonon(no quenching)
Lindhard=.12	.15 (Ge), .05 (Si)	No Quenching!
Req E_{th} =20 eV	30eV(Ge),10(Si)	200 eV
Resol. σ =4 eV	5 eV (Ge), 2 (Si)	40 eV
CRESST (10 gm)	CDMS(kg), CONNIE(gm)	CRESST, CDMS

CONNIE CCD: ~gm mass with eVee sensitivity

CRESST/NUCLEUS: ~gm mass with few eVnr sensitivit

MINER: ~gm-kg mass with 50 eVnr sensitivity

gm-kg scale MINER Detectors

TES R vs T

Wire-bonds

Vias

Largest – 1.5 kg Ge (SNOLAB)

Detector Technology Developed for SuperCDMS

iZIP Detector with ionization and phonon sensors for ER/NR discrimination (>keV) *First SNOLAB Ge iZIP (fabricated at TAMU)* <u>https://arxiv.org/pdf/1610.00006.pdf</u>

High Voltage Detector with NTL gain. Give up discrimination in favor of low threshold (~100eV). *First SNOLAB Si HV (fabricated at TAMU)*

Phonons are collected by superconducting Al fins (Δ =~meV), creating quasi particles that are then trapped by the W Transition Edge Sensors (TES), held in equilibrium between Normal and Super Conducting temp. SQUIDs measure small change in current through sharp $\Delta R/\Delta T$

Contact-Free High Voltage Detectors

100-gm single-e sensitive Contact Free Si HV Detector. Signal amplification observed without increase in leakage up to 300 V. Laser calibration done.

10

Hybrid HV Detector

Main idea: Monolithic detector with a LV and a HV side – LV to measure primary phonons like iZIP and HV to measure NTL phonons. Do it without significant NTL pollution from HV to LV. ~100gm

region to HV almost 100% $P_{HV} = \alpha [(1 - \eta_{HL})E_R LV_{HV} / 4 + \eta_{LH}E_R (1 + LV_{LV} / 4)]$ $P_{LV} = \beta [\eta_{HL}E_R LV_{HV} / 4 + (1 - \eta_{LH})E_R (1 + LV_{LV} / 4)]$ Discrimination : $D = \frac{P_{HV}}{P_{LV}}$

Discrimination improves at low energies. Funded by DOE to push the DM and CEvNS discovery potential – background is key to discovery

Phonon-mediated High-voltage Detector with Background Rejection for Low-mass Dark Matter and Reactor Coherent Neutrino Scattering Experiments:

https://inspirehep.net/literature/1802528

~100gm sapphire detector with ~15 eV σ baseline resolution

Pulse examples and Copper fluorescence

• Much faster timing from sapphire for position reconstruction and possible ER/NR discrimination

• 8.05 and 8.91 keV copper fluorescence lines for new way of calibrating in-situ

Low-Threshold Ge Detector inside Fully Hermetic Ge Shielding

3He + 32Si (β-decay in bulk)

Ge Activation

Inner copper shielding to for additional hermetic shielding being designed. Capable of hosting gm-kg scale detector

OF amp (eV)

0

Vias

Wire-bonds

Time in seconds

DRU

Our Non-blind Region Excess

~100 gm 3"x 4mm sapphire detector

All configurations sandwiched between two 3"x1" detectors, except the Ge coin[®] has additional active Ge donut veto

Passive and active inner shielding/veto payoff. Single-scatter events in bulk!

ER/NR discrimination, even if ~500eV, is highly desirable for discovery potential in CEvNS and DM

On MINER, we attempt to use Ge, Si and sapphire detectors of same size in the same configuration to understand BG.

CEvNS for Monitoring - Game Changing Technologies in Hand!

10-kg 100-ev NR Ge Hybrid (discrimination gives 10-DRU)

10-kg 100-ev NR Si Hybrid (discrimination gives 10-DRU

10-kg 100-ev NR Si HV (without discrim. 100-DRU)

Exposure in kg-days 1 day for 5-σ detection

10 days for 5- $\!\sigma$ detection

100 days for 5- σ detection

Safeguards needs quick (<100 days) Detection!

10-kg Non-Phonon (Lindhard) detector (1000-DRU without discrimination and without background modeling) – Integrate on tails

Reactor CEvNS experiments will not only help us understand fundamental new physics, but also fundamentally change how we use the unstoppable neutrinos to detect threat! 1000-10000 days for 5- σ detection

Possible Near Field Applications

- Expectations: provide reactor operation/history
 - Reactor power and fuel cycle changes, such as fuel composition U/Pu/Th and fuel burnup
 - Identify covert reactors/Pu diversion
- Compact MIvER setup ideal for deployment
 - Monitor age and cooling time at spent fuel storage
 - Breeding and proliferation activities in the case of advanced and molten salt rectors

Phase-2 at South Texas Project (STP) ~3 GW next year.

R Compact Installation with Bluefors -cvcle fridge in RF cage and shieldin

Beneficial to collaborate at a common site for quicker application of technology

We invite you to bring your technology to STP and collaborate on a common state of art shielding, active veto, analysis, and applications.

CONNIE @MINER

Reactor CENNS Program is very active

- Dark Matter detector technologies with stricter threshold and background requirements have allowed CENNS programs to flourish.
- Background at surface (not underground like Dark Matter experiment) still an issue
- Rapid progress in achieving sub-1000 DRU and sub-100eVnr requirements
- Within the next couple of years CENNS will open up new frontiers in fundamental physics research and applied nuclear safeguards