Near Future Reactor Antineutrino Inputs to Nuclear Data

Pranava Teja Surukuchi

WoNDRAM 2021

June 23, 2021

Pranava Teja Surukuchi

Introduction

* Focus only on flux and spectrum measurements in near future * Non-IBD reactor neutrinos not discussed

Reactor Neutrino Flux

- HEU data exists since the 1980s
- STEREO provides most precise and modern ²³⁵U flux
- Agrees with world average
- HEU flux measurement currently limited by reactor thermal power uncertainty

Reactor Neutrino Flux: HEU State-of-art

- HEU data exists since the 1980s
- STEREO provides most precise and modern ²³⁵U flux
- Agrees with world average
- HEU flux measurement currently limited by reactor thermal power uncertainty

Improvement in direct measurement of ²³⁵U needs further reduction in uncertainties

Reactor Neutrino Flux: HEU Future

Reactor Neutrino Flux: LEU

- θ_{13} experiments (Daya Bay, Double CHOOZ, and RENO) serve as the best LEU flux measurements
- Daya Bay and RENO also measured isotopic IBD yields from fission fraction evolution
- Isotopic yields from LEU measurements are systematics-limited

Yale

Reactor Neutrino Flux: LEU

- • θ_{13} experiments (Daya Bay, Double CHOOZ, and RENO) serve as the best LEU flux measurements
- Daya Bay and RENO also measured isotopic IBD yields from fission fraction evolution
- Isotopic yields from LEU measurements are systematics-limited

Yale

Reactor Neutrino Flux: LEU

- • θ_{13} experiments (Daya Bay, Double CHOOZ, and RENO) serve as the best LEU flux measurements
- Daya Bay and RENO also measured isotopic IBD yields from fission fraction evolution
- Isotopic yields from LEU measurements are systematics-limited

Sampling from wider range of fission fractions can provide better constraints on fission yields

Extending Fissions Fractions: NEOS II

- NEOS-II uses refurbished NEOS detector
- Source: Hanbit 5 (2.8 GWth LEU)
- Baseline: 24 m

Yale

Photomultiplier tubes Two buffer tanks at both side of target Acrylic window b/w target & buffers 19 R5912 (8 inch) PMTs in each buffer

NEOS Detector

15 panels with PMTs

DAQ systems 500 MS/s Flash ADC for target (recording waveforms for PSD) 62.5 MS/s ADC for muon counters

Y. J. Ko NEOS @ Neutrino-2020

Extending Fissions Fractions: NEOS II

- NEOS-II uses refurbished NEOS detector
- Source: Hanbit 5 (2.8 GWth LEU)
- Baseline: 24 m

Yale

- NEOS ran for 180(45) On(Off) days
- NEOS-II: 2 years Sep 2018 Sep 2020
- 500(90) On(Off) days

- NEOS-II uses refurbished NEOS detector
- Charge [pC] • Source: Hanbit 5 (2.8 GWth LEU) • Baseline: 24 m 1200 • NEOS ran for 180(45) On(Off) days • NEOS-II: 2 years Sep 2018 - Sep 2020 1000 • 500(90) On(Off) days • Drop in light output 800 • Claim no loss in sensitivity to evolution data

Y. J. Ko NEOS @ Neutrino-2020

Pranava Teja Surukuchi

Extending Fissions Fractions: NEOS II

- NEOS-II uses refurbished NEOS detector
- Source: Hanbit 5 (2.8 GWth LEU)
- Baseline: 24 m
- NEOS ran for 180(45) On(Off) days
- NEOS-II: 2 years Sep 2018 Sep 2020
- 500(90) On(Off) days
- Drop in light output
- Claim no loss in sensitivity to evolution data
- Results may be upcoming

- Satellite detector of JUNO
- Source: Taishan (4.6 GWth LEU)
- Baseline: ~30 m
- •~98.5% of neutrinos from a single core
- TAO should be able to sample from full reactor cycle

Extending Fissions Fractions: JUNO TAO

F.Petrucci @ Neutrino Telescopes 2021

- Combining LEU and HEU datasets
- •HEU provides constrains on ²³⁵U which can help reduce the uncertainties on other isotopes

- Combining LEU and HEU datasets
- •HEU provides constrains on ²³⁵U which can help reduce the uncertainties on other isotopes

Adapted from PRD 97, 013003

Description	Precis	sion on	σ_i
Description	$ ^{235}$ U	²³⁹ Pu	23
Daya Bay-like LEU	2.8	5.9	1(

- Combining LEU and HEU datasets
- •HEU provides constrains on ²³⁵U which can help reduce the uncertainties on other isotopes

Adapted from PRD 97, 013003

Description	Precis	sion on	σ_i
Description	²³⁵ U	²³⁹ Pu	23
Daya Bay-like LEU	2.8	5.9	1
Daya Bay-like LEU + new HEU	1.3	5.3	9
		1	
		•	

²³⁵U constrained by HEU, improvement in ²³⁹Pu

- Combining LEU and HEU datasets
- •HEU provides constrains on ²³⁵U which can help reduce the uncertainties on other isotopes

currently achievable at LEU

Adapted from PRD 97, 013003

Description	Precis	sion on	σ_{i}
Description	²³⁵ U	²³⁹ Pu	23
Daya Bay-like LEU	2.8	5.9	1
Daya Bay-like LEU + new HEU	1.3	5.3	9
oroved Daya Bay-like LEU + HEU	1.3	4.8	8
		1	
		/	

Further improvement in ²³⁹Pu from improvement in systematics

- Combining LEU and HEU datasets
- •HEU provides constrains on ²³⁵U which can help reduce the uncertainties on other isotopes

Adapted from PRD 97, 013003

Description	Precis	sion on	σ_{i}
Description	$ ^{235}$ U	²³⁹ Pu	23
Daya Bay-like LEU	2.8	5.9	1
Daya Bay-like LEU + new HEU	1.3	5.3	9
oroved Daya Bay-like LEU + HEU	1.3	4.8	8
Short-Baseline LEU + HEU	1.2	3.7	8
		1	

Further improvement in ²³⁹Pu by sampling from wider fission fractions

- Combining LEU and HEU datasets
- •HEU provides constrains on ²³⁵U which can help reduce the uncertainties on other isotopes

Adapted from PRD 97, 013003

Description		Precision on σ_i		
Description	$ ^{235}$ U	²³⁹ Pu	23	
Daya Bay-like LEU	2.8	5.9	1	
Daya Bay-like LEU + new HEU	1.3	5.3	9	
oroved Daya Bay-like LEU + HEU	1.3	4.8	8	
Short-Baseline LEU + HEU	1.2	3.7	8	
t-Baseline LEU + HEU, Correlated	1.5	3.8	6	
²³⁸ U measurem	ent bett	er than p	bred	
Drivei	I DY COL	relations		

- Combining LEU and HEU datasets
- •HEU provides constrains on ²³⁵U which can help reduce the uncertainties on other isotopes

A detector deployed both at HEU and LEU react to provide constraints comparable to theoretical

Yale

Adapted from PRD 97, 013003

Description			Precision on σ_i			
Deser	iption	²³⁵ U	²³⁹ Pu	23		
Daya Bay	-like LEU	2.8	5.9	1		
Daya Bay-like L	EU + new HEU	1.3	5.3	9		
proved Daya Ba	y-like LEU + HEU	1.3	4.8	8		
Short-Baseline	e LEU + HEU	1.2	3.7	8		
t-Baseline LEU	+ HEU, Correlated	1.5	3.8	6		
	Current theoretical	2.1	2.5			
tors will be able	uncertainties		2.3	•		
i uncertainites						

Reactor Neutrino Flux: Other Avenues

- •LEU reactors have fission fractions of <40% and <10% from 239 Pu and 241 Pu respectively
- Higher Pu fission fraction could help constrain ²³⁹Pu, perhaps even ²⁴¹Pu
- •MOX reactors and experimental reactors like versatile test reactors could provide additional opportunities for isotopic flux measurements

Possible reactor facilities for ISMRAN detector

Reactors name	Thermal power(MW_{th})	Fuel type
DHRUVA	100.0	Natural uranium
\mathbf{PFBR}	1250.0	$MOX(PuO_2-UO_2)$
U-Apsra	3.0	U_3Si_2 -Al (Low enriched

PhysRevD.102.013002

VTR test reactor baseline fission fractions

Isotope	Begin	End	Relative Change
U235	13.2%	12.8%	-3.7%
U238	12.6%	12.7%	1.5%
Pu239	61.8%	61.8%	0.02%
Pu240	8.2%	8.4%	2.2%
Pu241	3.7%	3.8%	2.3%

AAP 2018, arxiv:1911.06834

Yale

Pranava Teja Surukuchi

Yale

Pranava Teja Surukuchi

Spectrum

Reactor Neutrino Spectrum: State-of-art

- •HEU measurements (PROSPECT and STEREO) still dominated by statistical uncertainties
- LEU spectra (Daya Bay, RENO, Double CHOOZ) is systematics-limited

Yale

- Daya Bay decomposition is statistics-limited, but will be much closer to systematics with full data set
- Model systematics from ²³⁸U and ²⁴¹Pu are the next dominant systematic uncertainty

— Total — Statistics — Detector — Model (²³⁸U, ²⁴¹Pu) — Unfolding

Reactor Neutrino Spectrum: HEU PROSPECTs

Higher statistics HEU dataset needed to improve ²³⁵U spectrum

Yale

Reactor Neutrino Spectrum: HEU PROSPECTs

Higher statistics HEU dataset needed to improve ²³⁵U spectrum

- PROSPECT is pursuing a detector upgrade
- Source: HFIR HEU reactor
- Aiming for 5% resolution
- •7x PROSPECT stats expected

Inside PROSPECT-II

Match initial performance Improved stability

Facilitating redeployment

5" PMTs removed from LS target region

PMT bases and HV components covered by epoxy potting

Applying lessons learned

Christian Roca-APS April 2021

No planned HFIR outages until 2023: lots of data!

50% reduced material surface in contact with LiLS

LiLS formulation retested in lab: results show stable solution

Reactor Neutrino Spectrum: HEU

- PROSPECT-II aims to substantially reduce statistical uncertainties
 - •At the level of systematic and model uncertainties
- Aim for better ²³⁵U spectrum than spectra from LEU decomposition

- •LEU spectral decomposition may also see an improvement from wider fission fraction sampling
- Improvements possible from NEOS-II and JUNO-TAO

Reactor Neutrino Spectrum: Near Future

- •PROSPECT/Daya Bay and PROSPECT/STEREO finishing up joint analyses
- •All the three experiments still have to release their final datasets
- •A three-way joint analysis with final datasets has
 - •Potential for improved spectral constraints
 - •Provides cross-checks between datasets
- •Similar to flux measurements, reduction of uncorrelated uncertainties possible by deploying the same detector at LEU and HEU reactors
 - •Stronger constraints on the ²³⁵U and ²³⁹Pu possible
 - •Potential for measuring ²³⁸U spectrum

Reactor Neutrino Spectrum: Joint Analyses

High-resolution Reactor Neutrino Spectrum: JUNO TAO

- •JUNO-TAO aims to measure very high resolution spectrum (<2% @ I MeV)
- Statistical uncertainty expected to be at ~1%
- Perform fine structure comparison to summation spectrum

"Reactor neutrino data is nuclear data. What is needed to get it in the pipeline and maximize its utility as nuclear data?"

- Recent improvements in measured reactor flux and spectra
- Upcoming efforts aimed at measuring flux and high resolution spectra at the level of model uncertainties

Experimental Measurements for Nuclear Data

B. Littlejohn

Nuclear Data Pipeline for Reactor Neutrino Data

- Recent improvements in measured reactor flux and spectra
- Upcoming efforts aimed at measuring flux and high resolution spectra at the level of model uncertainties
- From users' perspective: Easily accessible measured reference flux and spectra

Nuclear Data Pipeline: Status

Adapted from D. Brown @ WoNDRAM 2021

- Most reactor neutrino data is only accessible as tables or plots in published data
- Users need to extract relevant data from publications

Nuclear Data Pipeline: Status

- Most reactor neutrino data is only accessible as tables or plots in published data
- Users need to extract relevant data from publications
- Recent progress in open data (e.g., Daya Bay, PROSPECT, STEREO)
- More work needed for standardized data dissemination

Nuclear Data Pipeline: Open Data

Non-exhaustive list of inputs needed from experiments:

- I.Measured (ideally) antineutrino or IBD prompt energy spectra
- 2.Detector specifics: Response matrix, smearing matrix, stand-off distance etc
- 3. Uncertainty estimates
- 4. Contributions from non-fissioning isotopes
- 5.Reactor-specific and time-varying contributions from spent nuclear fuel and non-equilibrium isotopes
- 6.Reactor operational parameters including reactor power, fission fractions etc

Future experiments should plan and define the workflows to provide open data

Yale

Nuclear Data Pipeline: Open Data Format

Format of experimental data

- Publicly available with DOI
- Tabulated
- Machine readable format
- Detailed data description
- Working code available on public repository

With appropriate data releases by experiments, data extraction can be made straightforward

Yale

- Modest effort needed for sustained data evaluation
 - Curation of experimental results
 - fission components etc.,)
 - Combine experimental results to extract most precise flux and spectra
 - Convert data to a standard format (e.g., ENDF)

Data Format

• Convert the experimental data to reactor-agnostic data (deconvolve from IBD cross-section, seperate non-

- •Significant progress in reactor neutrino experiments in the recent past and more to come in the near future
- •Potential to constrain various isotopes at the level of reactor neutrino models
- •Curated standardized experimental data could be used as benchmark for future experiments and model comparisons
- •Experiments should aim to provide all the relevant data to enable extraction and evaluation
- Modest effort needed and is worthwhile to provide standardized measured flux and spectrum to the users

Conclusions

