WONDRAM-2021

STATE OF THE ART EXPERIMENTAL PROBES OF REACTOR FLUX AND SPECTRA

T.J. Langford Yale University

DIVERSE SUITE OF CURRENT ANTINEUTRINO EXPERIMENTS

$heta_{13}$

Daya Bay, Double Chooz, RENO

Multiple large-volume detectors

significant overburden

LEU Power Reactors

vSBL

DANSS, PROSPECT, STEREO, SoLiD

> Compact, segmented detectors

surface-deployment

HEU Research Reactors

REACTOR MONITORING

miniChandler, ISMRAN, Panda

varied overburden

~25m baselines

LEU Power Reactors

Only a selection of experiments...

ISOTOPIC ANTINEUTRINO YIELD IN 2021

- LEU: time evolution extracts yield from ²³⁵U and ²³⁹Pu
- HEU: measure ²³⁵U directly, but lower power and higher backgrounds
- 2021 Status: evidence points to a deficit in ²³⁵U, good agreement between ²³⁹Pu data and prediction
- Recent beta-decay measurements from Kopeikin et al. consistent with a problem in ²³⁵U not ²³⁹Pu

aboratory

ISOTOPIC ANTINEUTRINO SPECTRUM SHAPE IN 2021

- ▶ LEU: time evolution extracts ²³⁵U and ²³⁹Pu, complications from ²³⁸U/²⁴¹Pu
- HEU: measure ²³⁵U directly, high backgrounds and complicated detector response
- New results remove detector response via unfolding (Prompt => Antineutrino)
- 2021 Status: evidence points to disagreements in spectral shape in both ²³⁵U and ²³⁹Pu when compared to either beta-conversion or summation

EXPERIMENTAL UNCERTAINTIES AND "UNIVERSAL" RESULTS

Experimental uncertainties are complicated and often only fully understood by the collaboration

Detector:

 escaping energy, nonlinearity, calibration, resolution, thresholds, ...

• Experimental:

exposure, reactor power/fuel, distance, ...

Analysis:

- statistics, modeling, assumptions, ...
- More than can fit in a letter-length publication
- Final results should be as free from these experiment-specific things as possible
- Shift from reporting experiment-specific to universal quantities:

lright

aboratory

- Prompt Energy => Antineutrino Energy
- Detected Rate => Isotopic Neutrino Yield

UNFOLDING REACTOR NEUTRINO SPECTRA

- Standard approach: compare theoretical models to data in the "experimental" space
 - Adjust model to account for detector effects
 - Perform any high-level analyses in "Prompt" or "Visible" energy space
- Since each experiment is unique, these spaces don't line up, and often have different treatments of detector effects
 - Can't directly compare measurements
- To remove these detector effects the response matrix needs to be inverted (which it can't be)
- Apply regularization while inverting balancing noise and bias, produce a true energy spectrum
 - Comparisons between measurements and theory happen in the "true" neutrino space

<u>right</u>

aboratory

Data Unfolding with Wiener-SVD Method

W. Tang, a,1 X. Li, b,1 X. Qian, a,2 H. Wei, a C. Zhang, a

^a Physics Department, Brookhaven National Laboratory, Upton, NY, USA ^b State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, NY, USA

E-mail: xqian@bnl.gov

UNFOLDING REACTOR NEUTRINO SPECTRA

- Standard approach: compare theoretical models to data in the "experimental" space
 - Adjust model to account for detector effects
 - Perform any high-level analyses in "Prompt" or "Visible" energy space
- Since each experiment is unique, these spaces don't line up, and often have different treatments of detector effects
 - Can't directly compare measurements
- To remove these detector effects the response matrix needs to be inverted (which it can't be)
- Apply regularization while inverting balancing noise and bias, produce a true energy spectrum
 - Comparisons between measurements and theory happen in the "true" neutrino space

ight

aboratory

UNFOLDING REACTOR NEUTRINO SPECTRA

- Standard approach: compare theoretical models to data in the "experimental" space
 - Adjust model to account for detector effects
 - Perform any high-level analyses in "Prompt" or "Visible" energy space
- Since each experiment is unique, these spaces don't line up, and often have different treatments of detector effects
 - Can't directly compare measurements
- To remove these detector effects the response matrix needs to be inverted (which it can't be)
- Apply regularization while inverting balancing noise and bias, produce a true energy spectrum
 - Comparisons between measurements and theory happen in the "true" neutrino space

<u>rig</u>ht

aboratory

UNFOLDING UNCERTAINTIES AND SUBTLETIES

- Unfolding comes at a cost of decreased resolution and increased binto-bin correlation
 - Regularization smooths the spectrum, severity depends on the uncertainties
- Increased uncertainties from the unfolding process need to be accounted for
- Comparisons between theory and measurements need to use a smearing filter matrix to account for reduced resolution

JOINT ANALYSES BETWEEN EXPERIMENTS

- Combining reactor spectral measurements is nontrivial at the moment
- PROSPECT/Daya Bay and PROSPECT/STEREO are working on jointly unfolding their ²³⁵U measurements
- Analysis Goals:
 - 1. Demonstrate consistency between independent results
 - 2. Increase statistical power, decrease systematic uncertainties, and produce unfolded spectra for community use
- Discovered many subtle differences between analyses and experiments that stumped even the insiders!
- Potential for a combination of all three experiments to produce real "community" spectra for ²³⁵U and ²³⁹Pu

lright

aboratory

(from M. Licciardi's talk at Moriond 2021)

PRESERVING DATA FOR FUTURE SCIENTISTS

- Too often data are scattered and incomplete, leaving results impossible to reproduce without "insider knowledge"
 - Combining different experiments is nearly impossible by outsiders
 - Example: aggregation of ²³⁵U neutrino yield by the 2011 Mention et al. paper
- It should be a priority of each experiment to produce data in a format that future generations can use
 - Common format that includes detector info, data, uncertainties, experimental conditions, and example code
 - Publicly accessible and citable (via DOI or similar)
- Community-developed "standard" flux and spectrum data that can be used directly

riaht

aboratory

Repository for publication-related High-Energy Physics data

HEPDATA EXAMPLE: STEREO SPECTRUM MEASUREMENT

Q Revised all definitions on engregy spectrum from any first data states on the STEREO detector at the STE	HEPData QSearch HEPData	a Search				🚯 About 🛛 Submission Help 🖷 Sign in						
	Q Browse all 🖉 Almazán, H. et al.			Last updated on 2020-12-03 08:49 [III] Accessed 263 times 59 Cite JSON								
In the construction of the constructio	 Hide Publication Information First antineutrino energy spectrum fro ²³⁵U fissions with the STEREO detecto 	► Download All - m r at Filter 7 data tables	Measured spectrum and normalized prediction for Phase-II 10.17182/hepdata.99805.v1/t1 JSON									
10.1172/hpdta.99005.1/2 Austract (data bastract) Nine dia support the measurement of the ²³⁵ U-induced antineutricino support method support the measurement of the ²³⁵ U-induced antineutricino support method. A significant support the measurement of the ²³⁵ U-induced antineutricino support method. A significant support the measurement of the ²³⁵ U-induced antineutricino support method. A significant support the measurement of the ²³⁵ U-induced antineutricino support the measurement of the ²³⁶ U-induced antineutricino support the induced and induced measurement of the ²³⁶ U-induced antineutricino support the induced antineutricino support the induced and induced antineutricino support the induced andifice andifice and induced antineutricino support the	The STEREO collaboration Almazán, H. , Bernard, L. , Blanchet, A. , Bonhomme, A. , Buck, C. , del Amo Sanchez, P. , El Atmani, I. , Labit, L. , Lamblin, J. , Letourneau, A. J.Phys.G 48 (2021) 075107, 2021. https://doi.org/10.17182/hepdata.99805 Journal INSPIRE Resources	Measured spectrum and > normalized prediction for Phase-II 10.17182/hepdata.99805.v1/t1 Data from Figure 13 - Measured IBD yield spectrum and area-normalized HM-based prediction. Here, error bars inlude only uncorrelated uncertainties, Experimental covariance > matrix	Data from Figur bars inlude only background sys provided in and phrases Measured sp	Data from Figure 13 – Measured IBD yield spectrum and area-normalized HM-based prediction. Here, error bars inlude only uncorrelated uncertainties, namely statistics, time-evolution systematic, reactor background systematic. This uncorrelated uncertainty is σ _j in eqn.(14). The full covariance matrix is provided in another entry. phrases Measured spectrum Normalized prediction								
These data support the measurement of the $\frac{329}{1100}$ the determines the $\frac{329}{100}$ the $\frac{329}{100}$ the $\frac{329}{100}$ the method $\frac{329}{100}$ the $\frac{329}{100}$ the method $\frac{329}{100}$ the met	Abstract (data abstract)	10.17182/hepdata.99805.v1/t2 Total covariance matrix of the measured	$E_{ m pr}$ [MeV]	Event rate [nu/day]	Normalized prediction [nu/day]	Visualize						
anticutions have been detected at about 10 m from the higher Response matrix 22.2125 22.7154 22.011 22.011 automical power. The messure diverses bead ocary spectrum is unfolded to provide a puer ²⁵³ U spectrum is unfolded to provide a puer ²⁵³ U spectrum is unfolded to provide a puer ²⁵³ U spectrum amplet ubs of 12.1 ± 3.4% (3.5 or). 10.1712/hepdata.39805.V/12 12.52-2.375 26.5307 26.5307 10.0000 26.55.2 26.7857 21.525 25.705 26.5307 10.0000	These data support the measurement of the ²³⁵ U-induced antineutrino spectrum shape by the STEREO experiment. 4	systematic uncertainties. It is denoted $V_{\rm pr}$ in eqn.(18).	1.625 - 1.875	20.4965 ±1.49953 uncorr	20.8851							
at nomial power. The measured inverses beta decay spectrum in nutineutrino energy. A careful study of the unfolding procedure, including a cross-validation using nutrinos with energy distributed according to HYSI BD yield prediction. The 2.125 - 2.375 26.273 = 1.1387 are energy 2.4359 1 1111 Section efficiency > 2.175 - 2.625 26.5047 # sources 26.5007 1111 Section efficiency > 2.425 - 2.875 26.5047 # sources 26.5007 1111 Data form figure e- sole cont efficiency was a function of E _n . Section efficiency as a function of E _n . 2.5099 # sources 25.0295 1111 Spectrum prediction on E _n . Spectrum prediction on the sole was detained for the sole source was a function of E _n . 2.125 - 4.375 2.203 - 2.30139 Sum errors @ Fill bars Log Scale (X) 10.17182/hepdata_99805.vt/M 3.675 - 4.125 1.3075 # source = 15.3339 10.5313 Sum errors @ Fill bars Log Scale (X) 10.17182/hepdata_99805.vt/M 4.625 - 4.875 15.6916 # source = 15.3339 13.4072 Sum errors @ Fill bars Log Scale (X)	antineutrinos have been detected at about 10 m from the h enriched core of the ILL reactor during 118 full days equiva	nighly lent Response matrix >	1.875 - 2.125	22.7754 ±1.32684 uncorr	23.2011	22-						
energy, A careful study of the unfolding procedure, including a correst valiation units no major biases are introduced by the method. A significant local distortion is found with negget to predictions around $E_{\mu} = 5.3 M (A. gaussing fir this local excess leads to an amplitude of 12.1 ± 3.4% (3.5 cr). 2.375 - 2.62 2 26.7857 ±1138 ever 26.5307 11-112-112-112-1112-1112-1112-1112-111$	at nominal power. The measured inverse beta decay spectr is unfolded to provide a pure ²³⁵ U spectrum in antineutring	rum ' o 10.17182/hepdata.99805.v1/t3	2.125 - 2.375	26.273 ±1.36781 uncorr	24.9591							
no major biases are introduced by the method. A significant local distortions around ing to HFR's IBD yield prediction. according to HFR's IBD yield prediction. 2.625 - 2.875 26.5047 ±3.48524 • eorr 27.227 be a from Figure 6 - 5.3 MeV. A gaussian fit of this local excess leads to an amplitude of 12.1 ± 3.4% (3.5 or). Selection efficiency * 3.375 - 3.625 25.5089 ±8.878811 • eorr 26.9077 8-	energy. A careful study of the unfolding procedure, includir cross-validation by an independent framework, has shown	sampled using STEREO's simulation using neutrinos with energy distributed	2.375 - 2.625	26.7857 ±1.1536 uncorr	26.5307	14-						
E_p = 5.3 MeV. A gaussian fit of this local excess leads to an amplitude of 12.1 ± 3.4% (3.5\sigma). Selection efficiency > 10.17182/hepdata.59805.v1/t4 2875 - 3.125 25.9089 ±8.871811 ever 26.9077 4- 4- 2- <	no major biases are introduced by the method. A significan local distortion is found with respect to predictions around	<pre>ht according to HFR's IBD yield prediction. The</pre>	2.625 - 2.875	26.5047 ±0.943214 uncorr	27.227							
10.17182/hepdata.99905.v1/t4 3.125 - 3.375 25.2816 ±0.774756 ±ccerr 25.9295 2	$E_{\nu} = 5.3$ MeV. A gaussian fit of this local excess leads to an amplitude of 12.1 \pm 3.4% (3.5 σ).	Selection efficiency >	2.875 - 3.125	25.9089 ±0.871831 uncorr	26.9077	·- '\						
3.375 - 3.625 25.0364 ±0.727643 uncerr 24.7281 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 E Vectori IMeVI Spectrum prediction in neutrino energy 3.625 - 3.875 22.6644 ±0.583567 uncerr 23.0139 Sum errors © Fill bars _ Log Scale (X) _ E Vectori IMeVI 10.17182/hepdata_99805.x1/15 Spectrum prediction for IL'S High Filx Reactor; given night from 1.8 to 10 MeV). Huber's 10.262 - 4.375 20.2163 ±0.647976 uncerr 18.9694 Log Scale (Y)		10.17182/hepdata.99805.v1/t4	3.125 - 3.375	25.2816 ±0.774756 uncorr	25.9295	2-						
Spectrum prediction in neutrino energy 3.625 - 3.875 22.6644 ±0.688367 uncorr 23.0139 Sum errors © Fill bars □ Log Scale (X) □ 10.17182/hepdata.99805.v1/t5 3.875 - 4.125 21.3075 ±0.6595 uncorr 20.8214 Log Scale (Y) □ 10.17182/hepdata.99805.v1/t5 4.125 - 4.375 20.2163 ±0.647976 uncorr 18.9694 Log Scale (Y) □ 10.17182/hepdata.99805.v1/t5 4.125 - 4.375 17.9515 ±0.673652 uncorr 17.0313 Deselect variables or hide different error bars by clicking on them. 10.17182/hepdata.99805.v1/t6 4.875 - 5.125 14.6039 ±0.89959 uncorr 13.4072 Variables		a function of E_{ν} .	3.375 - 3.625	25.0364 ±0.727643 uncorr	24.7281	2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 E \textfor\ [MeV]						
10.17182/hepdata.99805.v1/t5 3.875 - 4.125 21.3075 ±0.6596 uncorr 20.8214 Log Scale (Y) Spectrum prediction for ILL's High Flux Reactor, given in 50keV-wide E _w bins (centers ranging from 1.8 to 10 MeV). Huber's 4.125 - 4.375 20.2163 ±0.647976 uncorr 18.9694 Log Scale (Y) 0.17182/hepdata.99805.v1/t6 4.375 - 4.625 17.9515 ±0.673652 uncorr 17.0313 Deselect variables or hide different error bars by clicking on them. 10.17182/hepdata.99805.v1/t6 4.875 - 5.125 14.6039 ±0.80955 uncorr 13.4072 Yariables		Spectrum prediction in >	3.625 - 3.875	22.6644 ±0.688367 uncorr	23.0139	Sum errors 🕢 Fill bars 🗌 Log Scale (X) 🗌						
Spectrum prediction for ILL's High Flux Reactor, given in 50keV-wide E _v bins (centers ranging from 1.8 to 10 MeV). Huber's 4.125 - 4.375 20.2163 ±0.647976 uncorr 18.9694 Deselect variables or hide different error bars by clicking on them. Unfolded ²³⁵ U spectrum v 4.625 - 4.875 15.6916 ±0.705883 uncorr 15.3339 Deselect variables or hide different error bars by clicking on them. 10.17182/hepdata.99805.v1/t6 4.875 - 5.125 14.6039 ±0.809659 uncorr 13.4072 Variables		10.17182/hepdata.99805.v1/t5	3.875 - 4.125	21.3075 ±0.6596 uncorr	20.8214	Log Scale (Y)						
Huber's 4.375 - 4.625 17.9515 ±0.673652 uncorr 17.0313 Deselect variables or hide different error bars by clicking on them. Unfolded ²³⁵ U spectrum > 10.17182/hepdata.99805.v1/t6 4.875 - 5.125 14.6039 ±0.809659 uncorr 13.4072 Deselect variables or hide different error bars by clicking on them.		Spectrum prediction for ILL's High Flux Reactor, given in 50keV-wide E_{ν} bins	4.125 - 4.375	20.2163 ±0.647976 uncorr	18.9694							
Unfolded ²³⁵ U spectrum > 4.625 - 4.875 15.6916 ±0.705883 uncorr 15.3339 Intervention of the i		(centers ranging from 1.8 to 10 MeV). Huber's	4.375 - 4.625	17.9515 ±0.673652 uncorr	17.0313	Deselect variables or hide different error bars by						
10.17182/hepdata.99805.v1/t6 4.875 - 5.125 14.6039 ±0.809659 uncorr 13.4072		Unfolded ²³⁵ U spectrum >	4.625 - 4.875	15.6916 ±0.705883 uncorr	15.3339	Variables						
Data from Figure 14 - STEREO pure-200 Event rate [nu/day]		10.17182/hepdata.99805.v1/t6 Data from Figure 14 - STEREO pure- ²³⁵ U	4.875 - 5.125	14.6039 ±0.809659 uncorr	13.4072	Variables						

PROPOSAL: INTEGRATION INTO NNDC SIGMA

	Ċ	Dig	m	Ē	val	uat	ted	N	ucle	ear	Da	ata	Fil	le (EN	DF) R	letri	ieva	al & Pl	otting		
_	Period	ic Ta	able E	rows	e	Dire	ctory	y Tre	e Bro	wse		Basic	Retri	ieval		ldvan	ced	Retriev	val	Plot Cart	Computations		
Select first a library, then a sublibrary and finally click on a chemical element to obtain results. Data are available for materials with a cyan background.																							
ļ	_ibrary:	E	NDF/B	-VII.1	(USA,	2011	0		Sublit	orary:	Ne	eutron	reac	tions				٢					
0 n	1 H 3	4											5	6	7	8	9	2 He 10	Res	sults for Z=92	(n,inelastic) (n,total fission)	Interpreted Interpreted	
	LI 11 Na	Be 12 Ma											В 13 АІ	С 14 Si	N 15 P	0 16 S	17 CI	Ne 18 Ar		230 231	(n,γ) (n,β-delayed γ's)	Interpreted Interpreted	
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr		232	dσ/dE for γ product (n,non-elastic)	ion: Interpreted	
	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe		233	(n,total fission)	Interpreted	
	55 Cs 87 Er	56 Ba 88 Ra	57 La 89 Ac	72 Hf 104 Rf	73 Ta 105 Dh	74 W 106	75 Re 107 Bh	76 Os 108 Hs	77 Ir 109 Mt	78 Pt 110 Ds	79 Au 111 Ro	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn		234 235	(n,γ) Nu-bar covariances (n,total nubar)	Interpreted	
		1.04	58	59	60 Nd	61 Pm	62 8m	63	64 Gd	65 Th	66	67	68 Er	69 Tm	70 Vb	71				236	(n,prompt nubar)	Interpreted	
	-		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	_			238 239	(n,total) (n,elastic)	Interpreted Interpreted	Plot Plot
	ĺ	Vers ENe	ion H ew:(D END	istory ecen F/B-V	/: n <mark>ber</mark> : /II.1 e	2011) evalu	ated	neuti	ron lit	orary.										2/ J 241	(n,2n) (n,3n)	Interpreted Interpreted	Plot Plot Plot
		当Ne 王Ne 王Ne 王Ne	ew in ew in ew in ew in	versi versi versi versi	on 3. on 3. on 2. on 1.	1 (Oo 0 (Fe 0 (Ap 0 (Ap	tobe brua ril 20 ril 20	r 200 ry 20 008) 007))9))09)			yi	A el co	nti d a ulc	ine Ind	ut s e	ri pe he:	no ctr re!	um		(n,total fission) (n,γ) dσ/dE covariances: (n,total fission)	Interpreted Interpreted	Plot Plot

Database Manager: Dave Brown, NNDC, Brookhaven National Laboratory Web and Programming: B. Pritychenko, A.A. Sonzogni, NNDC, Brookhaven National Laboratory Data Source: CSEWG and NEA-WPEC

11

- There continue to be new results from a diverse set of reactor antineutrino experiments
- Leveraging these data we are gaining a clearer picture of the antineutrino yield and energy spectrum
 - Yield: Indications of a data/model mismatch for ²³⁵U
 - **Spectrum:** data/model mismatch for (at least) ²³⁵U and ²³⁹Pu
- Enhanced sensitivity can be enabled by combining data across experiments
- We need to prioritize preserving our data for future analyses, including all the details that don't fit in a five page letter
- Should develop a "community standard" for data archival and build an accessible repository of these data

