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Comparison of reactor antineutrino sources
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Diversions case studies were chosen to represent
well-supplied, technologically adept actors

Goal Criteria

* Higher weapon yield per unit mass
Focus on removal of plutonium * Antineutrino monitoring poorly suited to detecting LEU removal
* Diverted uranium still requires enrichment
« >1SQ (8kg)
Plutonium amount and purity o < 7% 24Py
* Few fission products

* Replacement assembly installed
Remain covert * Low change in fissile mass
* Remove assemblies near core periphery

Early availability * Central assembly

* No change in steel composition or volume

* U-10Zr replacement fuel (natural or LEU)

e Uranium enriched to nearest % of removed assembly fissile
content (U + fissile Pu)

* Remove as little total material as possible

Test the limits of antineutrino
safeguards technology




A goodness of fit test 1s used to compare the
reference and perturbed antineutrino signals

Minimize a y? statistic as a function of one
free parameter, x:

42 = Z(ni—(1+x)n£)2 +( X )2
: n; Onorm

x allows the operator to vary the reactor power
to conceal a diversion as best as possible

The “real” diverted case will vary about the
expected value of Ty = x? in a Gaussian:
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The safeguards null hypothesis: no material has been lost or
diverted

Type-I Error: False Positives

The IAEA concludes that a diversion has taken place when no
material is missing, but depending on deployment logistics, reactor
downtime, etc., can be quite costly

Type-II Error: False Negatives 5

The TAEA concludes that all material is accounted for when some
material has been diverted (non-detection probability)

Low Type-II error implies a strong safeguards method




UCFR Diversions 1a and 1b

Burnup 2.17 EFPY
(a) LEU

Replacement fuel (b) NatUU

Plutonium removed Mass (kg) %
238Py 3.08 x 102 0.38
239Py 7.53 93.04
240py 5.07 x 10! 6.26
24Py 247 x 102 0.31
242Py 1.08 x 103 0.01
Total 8.10

ID Power Adjustment 1 month 2 months 3 months 3 months, no adjustment
la -1.031 x 103 1.149 x 10-10 4276 x 10 1.541 x 104 0.255
1b -1.469 x 103 2.943 x 10 3.257 x 1073 1.676 x 102 0.523




UCEFR Diversions 2a and 2b

Burnup 12.42 EFPY
(a) LEU
Replacement fuel (b) NatUU
0202020202020 %02020 %000
St 0 - 0s0z000 - 002020

Plutonium removed Mass (kg) % l. 3:3:3:::%:::3:3:::?:::::3:3 :

238py 1.82 x 102 0.23

239py 7.55 93.95

240py 4.49 x 10! 5.59

241py 1.77 x 102 0.22

242py 6.49 x 104 0.01

Total 8.04

ID Power Adjustment 1 month 2 months 3 months 3 months, no adjustment
2a -7.031 x 10 0 0 0 0
2b 7.813 x 107 0 0 0 0




UCEFR Diversions 3a and 3b

Burnup 12.42 EFPY
(a) LEU

Replacement fuel (b) NatUU

Plutonium removed Mass (kg) %
238Py 0.11 0.23
239Py 45.3 93.95
240py 2.70 5.59
24Py 0.11 0.22
242Py 3.90 x 103 0.01
Total 48.21

ID Power Adjustment 1 month 2 months 3 months 3 months, no adjustment
3a -4.063 x 104 0 0 0 2.154 x 104
3b 4.531 x 104 0 0 0 7.685 x 104




AFR Diversions 1a and 1b

Burnup 15.75 EFPY
(a) LEU

Replacement fuel (b) NatUU

Plutonium removed Mass (kg) %
238Py 2.50 x 102 0.31
239Pu 7.56 93.93
240py 4.47 x 10! 5.55
24Py 1.62 x 102 0.20
242Py 6.12 x 104 0.01
Total 8.05

ID Power Adjustment 1 month 2 months 3 months 3 months, no adjustment

la -1.469 x 103 0 0 2.516 x 1013 2.213 x 1072 9

1b -9.531 x 10 0 0 6.344 x 10-12 8.562 x 104 -



AFR Diversions 2a and 2b

Burnup 21.25 EFPY
(a) LEU

Replacement fuel (b) NatUU

Plutonium removed Mass (kg) %
238Py 6.05 x 103 0.15
239Pu 391 97.00
240pPy 1.13 x 10! 2.80
241Pu 2.02 x 1073 0.05
242Py 3.78 x 107 <0.01
Total 4.03

ID Power Adjustment 1 month 2 months 3 months 3 months, no adjustment
2a -5.313 x 104 0 0 0 5.626 x 1012
2b 4.063 x 104 0 0 0 0




AFR Diversions 3a and 3b

Burnup 13.25 EFPY
(a) LEU

Replacement fuel (b) NatUU

Plutonium removed Mass (kg) %
238Pu 2.19 x 1073 0.08
239Pu 2.62 98.15
240pPy 4.68 x 102 1.75
24Py 5.79 x 104 0.02
242Py 6.84 x 106 <0.01
Total 2.67

ID Power Adjustment 1 month 2 months 3 months 3 months, no adjustment
3a -5.000 x 104 0 0 0 4.687 x 1012
3b 3.750 x 104 0 0 0 0




Test parameter variation directs antineutrio
safeguards implementation and improvement

o (T o).

Test parameter Parameter’s influence on safeguards test
IBD-like background Increases/decreases n; and n;, but not their difference
Detector suite fiducial mass Number of target protons for IBD reaction
Detector intrinsic efficiency Number of IBD and IBD-like events which are tallied
Reactor-detector standoff Geometric attenuation of the reactor antineutrino source
Manipulation of reactor power Minimization of the difference between each n; and n;
Required true negative rate Lower integration limit of Gaussian centered at y?2

Uncertainty on the detector event rates which allows for count

o ) oL
norm difference minimization




UCFR-1a/b

AFR-1a/b
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Diversion test power

Increasing total fiducial mass 1s usetul for tipping
on-the-bubble detection probabilities
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Throwing $ at problem




Detector efficiency increases have a low ceiling for
safeguards improvement

Linearly increase UCFR AFR
counting statistics ; ;
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Reactor-detector standoft strongly affects count rate
statistics and alters Signal:Background
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Diversion test power

Improper signal manipulation greatly increases
detection probability

Operator non-involvement causes
UCEFR core-center diversions of one

UCFR SQ j[o be Yisible to present-day AFR
devices with no other changes.

Low-probability event

_ Operator non-involvement causes
" AFR core-center diversions of one
SQ to enter “realm of possibility”

Diversion test power

and perturbed spectra separate o

Inflection points where reference — \
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Overcompensation i1s worse than
inaction




Signal manipulation illustration
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Diversion test power

Uncertaimnty reduction increases penalty for 1deal
signal manipulation and increases its difficulty

Elastic region of large
improvement

At low o, , the ideal
operator manipulation
changes

Antineutrino yield
uncertainty is ~ of 6,1,

Diversion test power

' \ ' Improvements in 235U
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Conclusions

Continuous safeguards employing current-generation antineutrino detectors cannot
protect against all ideally concealed diversions from high-burnup fast reactors at the
1-SQ level within IAEA-defined weapon conversion times.

Antineutrino-based safeguards tend to work best against diversions from high-
importance regions in the core.

One of the most impactful factors influencing detection probability for 1-SQ
diversions is the manipulation of the reactor state by the operator to minimize the
change 1n signal.

Improvements in signal-to-background ratio are required for safeguarding low-power
fast reactors.

If a useful reactor monitoring niche is carved out for which a higher than 5% rate of
false alarms 1s acceptable, antineutrino detectors can fill it, particularly for high-
power reactors.




Thank you!




Relaxing the 95% true negative rate requirement




Relaxing the required true negative rate sacrifices

specificity for large sensitivity improvements

Shifts location of 7.,

If T)isnear T,,,,,
shifting T,;, to the left
integrates the meat of
the distribution.

If continuous-data
safeguards have
different false positive
criteria, detection
probability is
dramatically improved

Diversion test power
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Fuel Cross Section Update Scheme

2082-group
MC? libraries

MC2-3
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Hex-Z Core
Geometry
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Resonance self-shielding,
region-wise flux, condensation
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Fuel regions are grouped into [12]
areas with similar compositions




Effects of XS updates
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