Big Picture: Case Study of Diversion and Limits of Antineutrino Safeguards Technology

Anna Erickson, Georgia Institute of Technology

2021 Nuclear Data for Reactor Antineutrino Measurements Workshop, June 21-24, 2021

Reactor Evaluation Through Inspection of Near-field Antineutrinos

https://www.nature.com/articles/s41467-019-11434-z

Comparison of reactor antineutrino sources

Diversions case studies were chosen to represent well-supplied, technologically adept actors

Goal	Criteria
Focus on removal of plutonium	 Higher weapon yield per unit mass Antineutrino monitoring poorly suited to detecting LEU removal Diverted uranium still requires enrichment
Plutonium amount and purity	 ≥ 1 SQ (8 kg) < 7% ²⁴⁰Pu Few fission products
Remain covert	 Replacement assembly installed Low change in fissile mass Remove assemblies near core periphery
Early availability	Central assembly
Test the limits of antineutrino safeguards technology	 No change in steel composition or volume U-10Zr replacement fuel (natural or LEU) Uranium enriched to nearest % of removed assembly fissile content (U + fissile Pu) Remove as little total material as possible

A goodness of fit test is used to compare the reference and perturbed antineutrino signals

• Minimize a χ^2 statistic as a function of one free parameter, *x*:

$$\chi^{2} = \left(\sum_{i} \frac{(n_{i} - (1 + x)n_{i}')^{2}}{n_{i}}\right) + \left(\frac{x}{\sigma_{norm}}\right)^{2}$$

- *x* allows the operator to vary the reactor power to conceal a diversion as best as possible
- The "real" diverted case will vary about the expected value of $T_0 = \chi^2$ in a Gaussian:

$$T \sim N(T_0, 2\sqrt{T_0})$$

The safeguards null hypothesis: no material has been lost or diverted

Type-I Error: False Positives

The IAEA concludes that a diversion has taken place when no material is missing, but depending on deployment logistics, reactor downtime, etc., can be quite costly

Type-II Error: False Negatives

The IAEA concludes that all material is accounted for when some material has been diverted (non-detection probability) Low Type-II error implies a strong safeguards method

UCFR Diversions 1a and 1b

Burnup	2.17 EFPY	
Replacement fuel	 (a) LEU (b) ^{Nat}U 	
Plutonium removed	Mass (kg)	0⁄0
²³⁸ Pu	3.08×10^{-2}	0.38
²³⁹ Pu	7.53	93.04
²⁴⁰ Pu	5.07×10^{-1}	6.26
²⁴¹ Pu	2.47×10^{-2}	0.31
²⁴² Pu	1.08×10^{-3}	0.01
Total	8.10	

ID	Power Adjustment	1 month	2 months	3 months	3 months, no adjustment
1a	-1.031×10^{-3}	1.149×10^{-10}	4.276×10^{-6}	1.541×10^{-4}	0.255
1b	-1.469×10^{-3}	2.943×10^{-5}	3.257×10^{-3}	1.676×10^{-2}	0.523

UCFR Diversions 2a and 2b

Burnup	12.42 EFPY	
Replacement fuel	 (a) LEU (b) ^{Nat}U 	
Plutonium removed	Mass (kg)	%
²³⁸ Pu	1.82×10^{-2}	0.23
²³⁹ Pu	7.55	93.95
²⁴⁰ Pu	4.49×10^{-1}	5.59
²⁴¹ Pu	1.77×10^{-2}	0.22
²⁴² Pu	6.49 × 10 ⁻⁴	0.01
Total	8.04	

ID	Power Adjustment	1 month	2 months	3 months	3 months, no adjustment
2a	-7.031×10^{-5}	0	0	0	0
2b	7.813×10^{-5}	0	0	0	0

UCFR Diversions 3a and 3b

Burnup	12.42 EFPY	
Replacement fuel	 (a) LEU (b) ^{Nat}U 	
Plutonium removed	Mass (kg)	%
²³⁸ Pu	0.11	0.23
²³⁹ Pu	45.3	93.95
²⁴⁰ Pu	2.70	5.59
²⁴¹ Pu	0.11	0.22
²⁴² Pu	3.90×10^{-3}	0.01
Total	48.21	

ID	Power Adjustment	1 month	2 months	3 months	3 months, no adjustment
3a	-4.063×10^{-4}	0	0	0	2.154×10^{-4}
3b	4.531 × 10 ⁻⁴	0	0	0	7.685×10^{-4}

AFR Diversions 1a and 1b

Burnup	15.75 EFPY	
Replacement fuel	 (a) LEU (b) ^{Nat}U 	
Plutonium removed	Mass (kg)	%
²³⁸ Pu	2.50×10^{-2}	0.31
²³⁹ Pu	7.56	93.93
²⁴⁰ Pu	4.47×10^{-1}	5.55
²⁴¹ Pu	1.62×10^{-2}	0.20
²⁴² Pu	6.12×10^{-4}	0.01
Total	8.05	

ID	Power Adjustment	1 month	2 months	3 months	3 months, no adjustment
1a	-1.469×10^{-3}	0	0	2.516×10^{-13}	2.213×10^{-2}
1b	-9.531 × 10 ⁻⁴	0	0	6.344×10^{-12}	8.562×10^{-4}

AFR Diversions 2a and 2b

Burnup	21.25 EFPY	
Replacement fuel	 (a) LEU (b) ^{Nat}U 	
Plutonium removed	Mass (kg)	%
²³⁸ Pu	6.05×10^{-3}	0.15
²³⁹ Pu	3.91	97.00
²⁴⁰ Pu	1.13×10^{-1}	2.80
²⁴¹ Pu	2.02×10^{-3}	0.05
²⁴² Pu	3.78×10^{-5}	< 0.01
Total	4.03	

ID	Power Adjustment	1 month	2 months	3 months	3 months, no adjustment
2a	-5.313×10^{-4}	0	0	0	5.626×10^{-12}
2b	4.063×10^{-4}	0	0	0	0

AFR Diversions 3a and 3b

Burnup	13.25 EFPY	
Replacement fuel	 (a) LEU (b) ^{Nat}U 	
Plutonium removed	Mass (kg)	%
²³⁸ Pu	2.19×10^{-3}	0.08
²³⁹ Pu	2.62	98.15
²⁴⁰ Pu	4.68×10^{-2}	1.75
²⁴¹ Pu	5.79×10^{-4}	0.02
²⁴² Pu	6.84×10^{-6}	< 0.01
Total	2.67	

ID	Power Adjustment	1 month	2 months	3 months	3 months, no adjustment
3a	-5.000×10^{-4}	0	0	0	4.687×10^{-12}
3b	3.750×10^{-4}	0	0	0	0

Test parameter variation directs antineutrino safeguards implementation and improvement

$$\chi^{2} = \left(\sum_{i} \frac{(n_{i} - (1 + x)n_{i}')^{2}}{n_{i}}\right) + \left(\frac{x}{\sigma_{norm}}\right)^{2}$$

Test parameter	Parameter's influence on safeguards test
IBD-like background	Increases/decreases n_i and n'_i , but not their difference
Detector suite fiducial mass	Number of target protons for IBD reaction
Detector intrinsic efficiency	Number of IBD and IBD-like events which are tallied
Reactor-detector standoff	Geometric attenuation of the reactor antineutrino source
Manipulation of reactor power	Minimization of the difference between each n_i and n'_i
Required true negative rate	Lower integration limit of Gaussian centered at χ^2
σ _{norm}	Uncertainty on the detector event rates which allows for count difference minimization

Background reduction is vital for monitoring small reactors, helpful for large reactors

Metric	UCFR-1a/b	AFR-1a/b
Signal:Background	~ 8:1	~ 1.5:1
	O (10 ⁻³)	O (10 ⁻³)
	0.9 × O (10 ⁻³)	$0.6 \times O(10^{-3})$
	O (10 ⁻¹)	O (10 ⁻²)

Increasing total fiducial mass is useful for tipping on-the-bubble detection probabilities

UCFR

- Unless a particular diversion mode is near minimum detection thresholds, increasing fiducial mass does not matter.
- If a diversion mode has < 99% non-detection probability, add more detectors!

Detector efficiency increases have a low ceiling for safeguards improvement

Reactor-detector standoff strongly affects count rate statistics and alters Signal:Background

- $1/r^2$ geometric attenuation of S
- Standoff changes signal but does not alter background
- Reassess containment building design if antineutrino safeguards are adopted

Improper signal manipulation greatly increases detection probability

- Operator non-involvement causes UCFR core-center diversions of one SQ to be visible to present-day devices with no other changes.
- Operator non-involvement causes AFR core-center diversions of one SQ to enter "realm of possibility"
- Inflection points where reference and perturbed spectra separate
- Overcompensation is worse than inaction

Signal manipulation illustration

18

Uncertainty reduction increases penalty for ideal signal manipulation and increases its difficulty

- Elastic region of large improvement
- At low σ_{norm} , the ideal operator manipulation changes
- Antineutrino yield uncertainty is ~ of σ_{norm}
- Improvements in ²³⁵U spectrum and IBD cross section expected with PROSPECT and SOLI∂

Conclusions

- 1. Continuous safeguards employing current-generation antineutrino detectors cannot protect against all ideally concealed diversions from high-burnup fast reactors at the 1-SQ level within IAEA-defined weapon conversion times.
- 2. Antineutrino-based safeguards tend to work best against diversions from highimportance regions in the core.
- 3. One of the most impactful factors influencing detection probability for 1-SQ diversions is the manipulation of the reactor state by the operator to minimize the change in signal.
- 4. Improvements in signal-to-background ratio are required for safeguarding low-power fast reactors.
- 5. If a useful reactor monitoring niche is carved out for which a higher than 5% rate of false alarms is acceptable, antineutrino detectors can fill it, particularly for high-power reactors.

Thank you!

21

Relaxing the 95% true negative rate requirement

Relaxing the required true negative rate sacrifices specificity for large sensitivity improvements

• Shifts location of *T_{crit}*

of *T_{crit}* UCFR

• If T_0 is near T_{crit} , shifting T_{crit} to the left integrates the meat of the distribution.

 If continuous-data safeguards have different false positive criteria, detection probability is dramatically improved

AFR

Fuel Cross Section Update Scheme

Effects of XS updates

25

Convergence of Monte Carlo fuel cycle histories

