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Reactor Evaluation Through Inspection of
Near-field Antineutrinos (RETINA)
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Translating neutron-based fission into 
detector event rates
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= antineutrinos generated for given burnup and 
energy bin

• Uncertainties:
• Thermal power + energy release per fission
• Relative fission rate for each isotope
• Fission product distribution
• Neutron spectrum



Operational Uncertainties

• Initial reactor fuel loading: mass and enrichment
•Reactor geometry
•Total thermal power
•Effect of temperature and other operational 
parameters on XS and neutron flux
•Propagation of fuel burnup
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Comparison of reactor antineutrino sources

High-power core: UCFR-1000 Low-power core: AFR-100

3D source Point source
Good counting statistics Poor counting statistics

SQ ~ 0.1% SQ ~ 1%
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High-power core: UCFR-1000
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Parameter Value (293 K)

Power (MWt/MWe) 2600/1000

Cycle length 60 EFPY

Active core height 360 cm

No. fuel assemblies 378

Initial HM inventory 201 t

Fuel form U-10Zr

Uranium enrichment 12.3% / natural

Volumetric power density 81.0 kW/L

Assembly

Core layout



Low-power core: AFR-100
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C. Grandy. "An Overview of U.S. SFR Design Concepts", 
GIF/INPRO Workshop on SFR Safety, December, 2011.

Parameter Value (293 K)
Power (MWt/MWe) 250/100
Cycle length 30 EFPY
Capacity factor 90%
Active core height 110 cm
No. fuel assemblies 150
Initial HM inventory 24.64 t
Fuel form U-10Zr
Core average enrichment 13.47%
Volumetric power density 58.2 kW/L



The RETINA detector suite is based on current-
generation antineutrino detectors

Parameter PROSPECT 
AD-I

PROSPECT
AD-II (est.)

RETINA
(each)

Scintillator EJ-309 EJ-309 EJ-309

Proton density 5.5 × 1028/m3 N/A 5.5 × 1028/m3

Neutron capture dopant 6Li 6Li 6Li

Target mass
(total) 2940 kg 10 t < 10 t

Target mass (fiducial) 1480 kg ~ 7 t 5 t

Efficiency in fiducial 
vol. 42% N/A 42%

Reactor source power 85 MW 85 MW 2600 MW / 250 MW

Core-detector
standoff 6.9 m / 9.4 m 15 m 25 m / 17 m

S:B ratio 3.1 / 1.8 3.0 ~ 8.0 / 1.5 8

PROSPECT
+

HFIR

RETINA
+

UCFR/AFR



Detector suite configuration
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The UCFR yields multiple SQ of plutonium per 
assembly, but its purity is compromised
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• The UCFR breeds plutonium above the burn zone, 
depletes it as the burn zone moves upward, and 
leaves relatively unusable plutonium behind.

• Once steady-state burn zone propagation begins, 
the amount of weapons-grade plutonium remains 
relatively constant

• Depleted plutonium below the burn zone is 
contaminated with both 240Pu and many fission 
products.



The UCFR-1000 antineutrino signal evolves 
quickly, then enters a steady state
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The AFR-100 yields little plutonium per assembly
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• The AFR’s low power density (~20% of 
traditional SFR designs) keeps the 
average plutonium content per assembly 
below 8 kg for nearly the entire cycle.

• Plutonium breeding is concentrated in the 
inner assemblies near the core midplane
as part of the effort to offset increased 
neutron absorption in the late cycle.

• Core-edge plutonium is ultra-pure due to cross section dominance by uranium isotopes 
(~15% 235U enrichment), but one SQ cannot be obtained from fewer than two (late-cycle) 
or three (mid-cycle) assemblies.



The AFR-100 antineutrino signal evolves 
gradually over the entire burnup cycle
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Fuel Cross Section Update Scheme
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Fuel regions are grouped into [12] 
areas with similar compositions



Effects of XS updates
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Summary
• The uncertainty on the reactor antineutrino source arising from the 

model of the reactor and its burnup cycle is propagated through the 
calculated isotopic fission rates, determined by:
• the initial-state reactor compositions, 
• the microscopic cross sections for each interaction, and 
• the operating history of the reactor. 

• The approach to propagating uncertainty on each of these becomes 
complex due to the significant correlation and anti-correlation 
introduced through the imposition of a total thermal power output 
for the reactor. 
• Question: what effect covariances will have on uncertainty 

quantification of antineutrino rate and spectrum? 16
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Questions
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