

Nuclear Data for the Reactor Antineutrino Source Term: Introduction

WONDRAM Workshop – June 22, 2021

Andrew Conant (ORNL) <u>conantaj@ornl.gov</u> Catherine Riddle (INL) Will Wieselquist (ORNL)

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

What is part of the source term session?

- We consider effects **up until** the fission process
 - Independent fission product yields (pre-fission fragment decay)
 - Reactor parameters which impacts yields or $\bar{\nu}_e$ spectrum
 - Neutron reaction cross-sections (fission, absorption, etc.)
 - Design and operational considerations
 - **Not** data related to decay, individual β or $\bar{\nu}_e$ spectra
 - Antineutrino Spectrum Calculations (Day 3 Wednesday)
 - Antineutrino Detector Response (Day 4 Thursday)

Reactor Source Term: Session Goals

- Fission product yield data
 - What are the uncertainties in the independent fission product yields?
 - What is their dependence on neutron energy?
 - Which fission product yields are most important?
 - What measurements are still needed?
- Fission product absorption cross-section data and uncertainty
 - What are the key fission products with high absorption XS uncertainties?
 - How is this calculated for reactor physics vs. neutrino measurements?
 - What reactor modeling can be done to ameliorate?
- Status of non-equilibrium corrections
 - What are irradiation environment effects on FP concentrations?
 - What are their uncertainties? How are they calculated?
 - What reactor modeling can be done to ameliorate?
- Opportunities/challenges with advanced reactors?
- Streamlining calculations

Fission product yield data

- β/\bar{v}_e spectra directly related to fission yields:
 - $N_{\beta}(E_e) = \sum_{F_i} Y_{F_i} S(E_e, Z_i, A_i)$ - β delayed n's ?
- Which are the most important?
 - MTAS measurements needed?

National Laboratory

Nuclide	Q_{β} (MeV)	GS BR (%)	$J^{\pi}_{gs} ightarrow J^{\pi}_{gs}$	Contr. (%)	
⁹⁶ Y	7.1	95.5(5)	$0^- \rightarrow 0^+$	6.3	
⁹² Rb	8.1	95.2(7)	$0^- \rightarrow 0^+$	6.1	23511
¹⁰⁰ Nb	6.4	50(7)	$1^+ \rightarrow 0^+$	5.5	0
¹³⁵ Te	5.9	62(3)	$(7/2^{-}) \rightarrow 7/2^{+}$	3.7	4
^{142}Cs	7.3	56(5)	$0^- \rightarrow 0^+$	3.5	
^{140}Cs	6.2	36(2)	$1^- \rightarrow 0^+$	3.4	MeV
⁹⁰ Rb	6.6	33(4)	$0^- \rightarrow 0^+$	3.4	1110 1
⁹⁵ Sr	6.1	56(3)	$1/2^+ \to 1/2^-$	3.0	
88 Dh	53	77(1)	$2^- \rightarrow 0^+$	2.9	
K0	5.5	//(1)	2 / 0		
Nuclide	Q_{β} (MeV)	GS BR	$J_{gs}^{\pi} ightarrow J_{gs}^{\pi}$	Contr.	
Nuclide 92Rb	Q_{β} (MeV) 8.1	GS BR (%) 95 2(7)	$J_{gs}^{\pi} \to J_{gs}^{\pi}$ $0^{-} \to 0^{+}$	Contr. (%)	23511
Nuclide ⁹² Rb ⁹⁶ Y	$ \begin{array}{c} Q_{\beta} \\ (\text{MeV}) \\ 8.1 \\ 7.1 \end{array} $	GS BR (%) 95.2(7) 95.5(5)	$J_{gs}^{\pi} \rightarrow J_{gs}^{\pi}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$	Contr. (%) 21.6 14.5	235U
Nuclide 92 Rb 96 Y 142 Cs	Q_{β} (MeV) 8.1 7.1 7.3	GS BR (%) 95.2(7) 95.5(5) 56(5)	$J_{gs}^{\pi} \rightarrow J_{gs}^{\pi}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$	Contr. (%) 21.6 14.5 6.8	235U 5 5
Nuclide 92 Rb 96 Y 142 Cs 100 Nb	$ \begin{array}{c} & Q_{\beta} \\ & (\text{MeV}) \\ \hline & 8.1 \\ & 7.1 \\ & 7.3 \\ & 6.4 \end{array} $	GS BR (%) 95.2(7) 95.5(5) 56(5) 50(7)	$J_{gs}^{\pi} \rightarrow J_{gs}^{\pi}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $1^{+} \rightarrow 0^{+}$	Contr. (%) 21.6 14.5 6.8 4.7	²³⁵ U 5.5
Nuclide 92 Rb 96 Y 142 Cs 100 Nb 93 Rb	$ \begin{array}{c} & Q_{\beta} \\ & (MeV) \\ \hline & 8.1 \\ & 7.1 \\ & 7.3 \\ & 6.4 \\ & 7.5 \\ \end{array} $	GS BR (%) 95.2(7) 95.5(5) 56(5) 50(7) 35(3)	$J_{gs}^{\pi} \rightarrow J_{gs}^{\pi}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $1^{+} \rightarrow 0^{+}$ $5/2^{-} \rightarrow 7/2^{+}$	Contr. (%) 21.6 14.5 6.8 4.7 4.6	²³⁵ U 5.5 MeV
Nuclide 92 Rb 96 Y 142 Cs 100 Nb 93 Rb 90 Rb	$\begin{array}{c} Q_{\beta} \\ (\text{MeV}) \\ \hline 8.1 \\ 7.1 \\ 7.3 \\ 6.4 \\ 7.5 \\ 6.6 \end{array}$	GS BR (%) 95.2(7) 95.5(5) 56(5) 50(7) 35(3) 33(4)	$J_{gs}^{\pi} \rightarrow J_{gs}^{\pi}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $1^{+} \rightarrow 0^{+}$ $5/2^{-} \rightarrow 7/2^{+}$ $0^{-} \rightarrow 0^{+}$	Contr. (%) 21.6 14.5 6.8 4.7 4.6 3.4	²³⁵ U 5.5 MeV
Nuclide 92 Rb 96 Y 142 Cs 100 Nb 93 Rb 90 Rb 98m Y	$\begin{array}{c} Q_{\beta} \\ (\text{MeV}) \\ \hline 8.1 \\ 7.1 \\ 7.3 \\ 6.4 \\ 7.5 \\ 6.6 \\ 9.0 \\ \end{array}$	GS BR (%) 95.2(7) 95.5(5) 56(5) 50(7) 35(3) 33(4) 12(5) ^a	$J_{gs}^{\pi} \rightarrow J_{gs}^{\pi}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $1^{+} \rightarrow 0^{+}$ $5/2^{-} \rightarrow 7/2^{+}$ $0^{-} \rightarrow 0^{+}$ $(4,5) \rightarrow 4^{+}$	Contr. (%) 21.6 14.5 6.8 4.7 4.6 3.4 2.8	²³⁵ U 5.5 MeV
Nuclide 9 ⁹² Rb 9 ⁶ Y 1 ⁴² Cs 1 ⁰⁰ Nb 9 ³ Rb 9 ⁹⁰ Rb 9 ^{8m} Y 1 ⁴⁰ Cs	$\begin{array}{c} Q_{\beta} \\ (\text{MeV}) \\ \hline 8.1 \\ 7.1 \\ 7.3 \\ 6.4 \\ 7.5 \\ 6.6 \\ 9.0 \\ 6.2 \\ \end{array}$	GS BR (%) 95.2(7) 95.5(5) 56(5) 50(7) 35(3) 33(4) 12(5) ^a 36(2)	$J_{gs}^{\pi} \rightarrow J_{gs}^{\pi}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $0^{-} \rightarrow 0^{+}$ $1^{+} \rightarrow 0^{+}$ $5/2^{-} \rightarrow 7/2^{+}$ $0^{-} \rightarrow 0^{+}$ $(4,5) \rightarrow 4^{+}$ $1^{-} \rightarrow 0^{+}$	Contr. (%) 21.6 14.5 6.8 4.7 4.6 3.4 2.8 2.4	²³⁵ U 5.5 MeV

Sonzogni, Phys. Rev. C. (2015)

FPY uncertainties for LWR systems

Fission- able	Fission product	Thermal incident neutron energy		Intermediate incident neutron energy		Fast incident neutron energy	
i	j	Mean (-)	Standard deviation (%)	Mean (-)	Standard deviation (%)	Mean (-)	Standard deviation (%)
²³⁵ U	¹³⁵ Te	3.23E-02	2.11	2.48E-02	9.93	1.05E-02	18.05
	135	2.92E-02	2.28	3.59E-02	6.58	3.13E-02	6.14
	¹³⁵ Xe	7.97E-04	1.11	1.20E-03	10.86	4.54E-03	6.17
	¹⁴⁹ Nd	6.87E-05	48.53	3.50E-05	48.39	6.98E-04	48.36
	¹⁴⁹ Pm	3.93E-08	47.81	1.63E-08	49.60	1.31E-05	50.00
	¹⁴⁹ Sm	1.75E-12	48.07	5.68E-13	48.57	2.67E-08	47.72
²³⁸ U	¹³⁵ Te	-	-	4.61E-02	9.01	2.65E-02	9.18
	¹³⁵	-	-	1.36E-02	28.92	2.59E-02	28.78
	¹³⁵ Xe	-	-	1.23E-04	2.45	1.33E-03	2.54
	¹⁴⁹ Nd	-	-	4.99E-06	47.71	6.30E-05	47.71
	¹⁴⁹ Pm	-	-	1.19E-09	46.92	1.57E-07	46.92
	¹⁴⁹ Sm	-	-	1.55E-14	50.35	2.27E-11	50.41
²³⁹ Pu	¹³⁵ Te	2.19E-02	9.62	2.12E-02	28.11	6.87E-03	45.20
	135	4.28E-02	4.94	3.92E-02	9.97	3.25E-02	24.16
	¹³⁵ Xe	3.14E-03	3.43	6.11E-03	6.14	8.54E-03	47.60
	¹⁴⁹ Nd	4.99E-04	48.45	5.89E-04	49.10	2.37E-03	46.64
	¹⁴⁹ Pm	2.38E-06	50.82	2.55E-06	48.70	1.39E-04	47.55
	¹⁴⁹ Sm	8.22E-10	48.13	9.57E-10	48.52	9.81E-07	49.94

Wieselquist, NRC Report (2017)

5

Fission yield data of "non-equilibrium" isotopes

- Long time to reach equilibrium of certain FP •
 - 135 Xe builds up over ~ hours/days
 - ¹⁴⁹Sm builds up over ~ month
 - Impacts neutron flux and fission distributions
- Isotopes previously identified

6

National Laboratory

- ⁹⁷Zr. ¹³²I. ⁹³Y. ¹⁰⁶Ru. ¹⁴⁴Ce. ⁹⁰Sr
- (Haves Rev Mod Phys 12016)

• Is better modeling needed?

$${}^{106}\text{Ru} = {}^{11/2} = 372 \text{ day} \atop E_{max} = 0.04 \text{ MeV}} \text{Rh} = {}^{T_{1/2} = 30 \text{ s}} \atop E_{max} = 3.541 \text{ MeV}} \text{Pd} (\text{stab}),$$

$${}^{144}\text{Ce} = {}^{T_{1/2} = 285 \text{ day}} \atop E_{max} = 0.32 \text{ MeV}} \text{Pr} = {}^{T_{1/2} = 17 \text{ min}} \atop E_{max} = 2.996 \text{ MeV}} \text{Nd}(T_{1/2} = 3 \times 10^{15}) \text{ yr}.$$

$$\underbrace{\text{Kopeikin, Phys. At. Nuc. (2001)}} \text{Ratio of } \overline{\nu}_{a}$$

JANIS 4.0 / NEA Data:

3.5

to t=1 day

Open slide master to edit

Cross-section data for better modeling

- For current and advanced reactors:
 - ²³⁵U(n,f) fast
 - ²³⁹Pu(n,f) fast
 - ^{135m}Xe(n,X)
 - Various scattering (graphite, salt, FLiBe, iron, etc.)
- How has CIELO helped improve?
 - Collaborative International Evaluation Library Organization
 - k_{eff} in nuclear tech.
 - _ ^{235,236,238}U
 - ²³⁹Pu
 - ¹⁶O, ⁵⁶Fe, ¹H
- What about?
 - Sensitivities
 - Uncertainties

slide master to edit

Key cross-section data uncertainties

Nuclide, <i>i</i>	Neutron reaction type, <i>x</i>	Cross section,	Uncertainty with	Uncertainty without	Uncertainty weighted
		σ_{ix}	correlation	correlation	average
		(barns)	(%)	(%)	(%)
²³⁵ U	fission (f)	3.73E+01	0.32	0.10	0.40
	gamma (γ)	8.68E+00	1.26	0.48	2.15
	$\bar{\nu}$	2.54E+00	0.11	0.05	0.26
²³⁸ U	fission (f)	1.27E-01	0.52	0.29	0.64
	gamma (γ)	2.12E+00	1.17	0.72	2.50
	scattering (sIN)	1.24E+00	14.08	6.49	16.10
²³⁹ Pu	fission (f)	8.20E+01	0.77	0.31	1.10
	gamma (γ)	4.42E+01	1.13	0.49	1.53
	$\bar{\nu}$	3.01E+00	0.07	0.05	0.22
²⁴⁰ Pu	gamma (γ)	2.16E+02	0.25	0.08	0.27
¹³⁵	gamma (γ)	5.16E+00	3.65	3.65	13.24
¹³⁵ Xe	gamma (γ)	1.63E+05	4.15	1.48	4.15
¹⁴⁹ Pm	gamma (γ)	1.13E+02	16.14	5.53	21.43
¹⁴⁹ Sm	gamma (γ)	4.44E+03	1.47	0.59	1.58
¹⁰ B	alpha (α)	2.50E+02	0.08	0.02	0.08
¹⁵⁵ Gd	gamma (γ)	2.14E+03	3.27	1.76	4.95
⁹⁰ Zr	gamma (γ)	9.53E-03	11.72	5.25	16.97
¹ H	scattering (sEL)	1.21E+01	0.20	0.04	0.20
	gamma (γ)	2.16E-02	1.07	0.29	1.08
² H	scattering (sEL)	3.03E+00	1.67	0.40	1.97
	gamma (γ)	3.63E-05	5.66	2.41	8.10
¹⁶ O	scattering (sEL)	3.41E+00	1.91	0.42	1.97
	gamma (γ)	7.62E-05	32.22	10.70	34.84
²³² Th	gamma (γ)	2.80E+00	1.64	1.59	4.07

Wieselquist, NRC Report (2017)

E_n impact on ²³⁵U fission mass distributions

C. Romano, Y. Danon, R. Block, J. Thompson, E. Blain, and E. Bond, Fission fragment mass and energy distributions as a function of incident neutron energy measured in a lead slowing-down spectrometer, PHYSICAL REVIEW C 81, 014607 (2010)

Open slide master to edit

Neutron energy dependence on FPY

- ENDF/B-VIII.0 has changed no fission yield data
- Reactor yields only for thermal, intermediate, and fast
- Does this need to be better understood?

2350	E = 0.0253 eV			
Material	Quantity	ENDF/B-VIII.0	ENDF/B-VIII.0	Ratio
		(current)	(mod)	(current/mod)
^{90g} Y	ΔCΥ	3.7004E-02	5.7819E-04	6.4000E+01
^{90g} Zr	ΔCΥ	3.7004E-02	5.7819E-04	6.4000E+01
⁹¹ gY	ΔCΥ	3.7298E-02	5.8275E-04	6.4003E+01
^{91m} Y	ΔCΥ	2.1633E-02	1.3275E-03	1.6296E+01
^{93g} Y	ΔCΥ	4.0616E-02	7.9430E-04	5.1134E+01
^{93m} Y	ΔCY	1.4160E-02	1.3719E-03	1.0321E+01
^{109g} Ru	IY	8.5644E-06	1.7129E-05	5.0000E-01
^{109g} Ru	ΔΙΥ	5.4812E-06	1.0962E-05	5.0000E-01
^{109g} Ru	CY	3.0360E-04	3.1146E-04	9.7475E-01
^{109g} Ru	ΔCΥ	1.9431E-04	6.8580E-05	2.8333E+00
^{109g} Rh	IY	2.0599E-08	4.1197E-08	5.0000E-01
^{109g} Rh	ΔΙΥ	1.3183E-08	2.6366E-08	5.0000E-01
^{109g} Rh	CY	3.1220E-04	3.1150E-04	1.0023E+00
^{109g} Rh	ΔCΥ	1.9981E-04	6.8580E-05	2.9136E+00
^{109g} Pd	ΔCΥ	1.9981E-04	6.8580E-05	2.9136E+00
^{109g} Ag	ΔCΥ	1.9982E-04	6.8580E-05	2.9137E+00
^{109m} Ag	ΔCΥ	1.9970E-04	6.8540E-05	2.9137E+00
^{132g} I	ΔCΥ	2.7596E-02	6.0619E-04	4.5523E+01
133gI	ΔCΥ	4.2858E-02	1.9754E-03	2.1695E+01
^{133g} Xe	ΔCΥ	4.2874E-02	3.4287E-03	1.2504E+01
135gCs	ΔCΥ	4.1849E-02	4.5770E-04	9.1434E+01
^{135g} Ba	ΔCY	4.1849E-02	4.5770E-04	9.1434E+01
¹⁴⁸ gPr	ΔCΥ	1.0456E-02	1.2999E-03	8.0435E+00

Mattera, BNL Report (2021)

Littlejohn, Phys. Rev. D. (2018)

$\rho(E, t = 165 \text{ d}), (\text{MeV fission})^{-1}$ Other contributions? 1-Total 2-Fission 3-Act. Cap. Used nuclear fuel ²⁴⁴Cm SF > 90% of high energy β in PWR ²⁴⁰Pu SF > 90% of high energy β in breeder blanket Antineutrino energy, MeV Nonfuel (capture, activation, etc.) Kopeikin, Phs. At. Nuc. (2003) $\frac{d^2\phi(E_{\overline{\nu}_e},t)}{dE_{\overline{\nu}_e}dt} = \sum_i f_i(t) \frac{dN_i}{dE_{\overline{\nu}_e}} c_i^{\text{ne}}(E_{\overline{\nu}_e},t) + s_{\text{SNF}}(E_{\overline{\nu}_e},t) + a_{\text{NF}}(E_{\overline{\nu}_e},t)$ 10^{19} 60.0 80.0 80.0 1 min Neutrino flux $[s^{-1} \text{ MeV}^{-1} \text{ ton}^{-1}]$ 10^{18} Al-28 1 hr 1 day He-6 0.07 to 535 0.00 to 535 10^{17} 30 days V-52 1 yr Total 10 yr 10^{16} Batio 0.05 0.04 0.03 0.00 0.01 0.00 1.75 100 yr 10^{15} 10^{14} 44 Ce/ 144 Pr Ru/¹⁰⁶Rf Kr/⁸⁸Rb 10^{13} 10^{12} 8 6 2.00 3.25 3.50 2.25 2.50 2.75 3.00 Antineutrino Energy (MeV) Neutrino energy E [MeV] PROSPECT @ HFIR **DAK RIDGE** Brdar, Phys. Rev. App. (2017) Conant, Phys. Rev. C. (2020)

National Laboratory

Reactor Power and Energy Uncertainties

$$\frac{dN(E,t)}{dEdt} = \frac{P_{th}(t)}{\overline{E_f}(t)} \sum_{i=1}^{4} \frac{f_i(t)s_i(E)c_i^{ne}(E)}{\sum_{i=1}^{4} \frac{f_i(t)s_i^{ne}(E)}{\sum_{i=1}^{4} \frac{f_i(t)s_i^{ne}(E)}{\sum_{$$

	Sou	vrce		Po	wer U (ncertainty (%)
	Dayo	a Bay			(0.5
	PROSPECT					2.1
00	<u>D</u>	aya I	Bay	<u>, CF</u>	PC (2	<u>2017)</u>
00 -	Cycle 13 Predicted rate Reported power	Cycle 13 Outage	< Cy	cie 14 [⇒]	60 60 80 80 80 80 80 80 80 80 80 80 80 80 80	<u>Bowden</u> (2008)

CAK RIDGE

12

TABLE XII: Prompt fission Q-values in MeV obtained with $ENDF/B-VI.8 data^{a}$. To get total energy deposition, add the incident energy to total Q-values tabulated here.

Nuclide	Incident	ENDF/B	$Madland^{b}$	NJOY	NJOY
	energy e_n	VI.8		(old c)	(Eq. 36)
	$0.0253~{\rm eV}$	180.88	180.57	180.89	180.89
$^{235}\mathrm{U}$	$1.0 \mathrm{MeV}$	180.42	179.68	180.08	180.43
-	$14.0 { m MeV}$	169.31	168.14	164.49	169.39
	$0.0253~{\rm eV}$	181.31	181.04	181.33	181.33
$^{238}\mathrm{U}$	$1.0 \mathrm{MeV}$	181.04	180.15	180.71	181.06
	$14.0 { m MeV}$	169.62	169.37	164.88	169.78
100.000	0.0253 eV	189.45	188.42	189.44	189.44
239 Pu	$1.0 \mathrm{MeV}$	188.65	187.42	188.30	188.65
	$14.0 { m MeV}$	177.07	174.12	172.19	177.09

Prompt E release, ENDF/B-VII.0

$\begin{array}{ccc} 235 \ \mathrm{U} & 202.36 \pm 0.26 \\ 238 \ \mathrm{U} & 205.99 \pm 0.52 \\ 239 \ \mathrm{Pu} & 211.12 \pm 0.34 \\ 241 \ \mathrm{P} & 214.96 \pm 0.22 \end{array}$	isotope	energy per fission/MeV	
$\begin{array}{ccc} ^{238}{\rm U} & 205.99 \pm 0.52 \\ ^{239}{\rm Pu} & 211.12 \pm 0.34 \\ ^{241}{\rm P} & 214.96 \pm 0.32 \end{array}$	$^{235}\mathrm{U}$	202.36 ± 0.26	
²³⁹ Pu 211.12 ± 0.34	$^{238}\mathrm{U}$	205.99 ± 0.52	
241 D 214 26 + 0.22	239 Pu	211.12 ± 0.34	
241 Pu 214.26 ± 0.33	241 Pu	214.26 ± 0.33	

What tools can be used for reactor analysis?

Workshop on Applied Nuclear Data (2020) Proceedings from 2020 iteration

A.2.5 Antineutrino physics

To address the reactor antineutrino anomaly and foster the development of applied antineutrino physics technologies, new nuclear physics measurements, neutrino-centered nuclear data infrastructure, and advances in modeling and simulation for antineutrino sources are required. For nuclear physics measurements, improved accuracy and uncertainty are needed in beta energy spectrum shape functions, beta decay level feeding, fission product yields, and relevant covariance data for short-lived, high Q-value fission products.⁹ Simultaneous effort is needed towards integrating diverse neutrino datasets and models into a common standardized format and repository with provisions for public access. In addition to basic nuclear physics inquiry, these data provide benefits for broadening the scope of the validation stage of the nuclear data pipeline (i.e., as an "integral benchmark" for illuminating errors in nuclear data measurements and processing)¹⁰ and for developing capabilities for remote measurement of fissile material inventory in nuclear reactor monitoring applications. *Recommended actionable tasks include direct measurements of beta energy spectra for high-yield, high Q-value fission products, related neutrino modeling to assess impacts of new datasets, and development of standardized nuclear data products for existing reactor antineutrino data.*

Speakers for today's session

Speaker	Торіс	Time
Amy Lovell (LANL)	Overview of fission yield evaluations	11:20
Muriel Fallot (U. of Nantes)	Non-equilibrium corrections and the MURE utility for neutrinos	11:40
Anna Erickson (GT)	Reactor Operational Uncertainties and Effect on Detection Precision	12:00
Steve Skutnik (ORNL)	Uncertainty in fission product yields and absorption	12:20
Robert Mills (UK NNL)	Modeling of Neutrino Production and Spectra From a Magnox Reactor	12:40
	1:00	
Nick Smith (INL)	Advanced reactor instrumentation at NRIC and potential for neutrino measurements	1:15
Dis	scussion	1:35

Thank you

Be prepared for an open discussion following the presentations and break

Backup Slides

