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Use of Particle Transport (PT)

1) Determination of source & detector response

Rger =< wparo-det >
Where ¥4, is obtained by

Hl/)par — Spar
2) Design of detector

3) Determination of background

4) Reduction of background,
 identification of interfering noise and its removal
e Shielding

5) Source image reconstruction and inference of physical
parameters



Antineutrino detection

* Inverse beta decay (IBD) interaction
vo+p—oet+n

e Detection process by coincidence of two signals:

1. light signal from scintillation materials caused by energy deposition
due to positron annihilation

2.  Light signal from scintillation materials caused by energy deposition
due to neutron capture process on + SLi —» 3He + 3T
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CHANDLER detection system

CHANDLER: 16x16x16
(to be built)

miniCHANDLER: 5x7x7 microCHANDLER: 3x3x3

(tested at the North Anna (used for determination
Power station) of proton quenching)
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2) Detector Design : Size of cubes & thickness of Li
sheets

* Performed MCNP Monte Carlo sensitivity analyses

Efficiency of absorption in Li-6

Loss Term Fraction
Li-6 absorption (signal) 51.2%
PVT absorption 33.0%
Leakage 15.8 %
Other absorption 0.1 %

* Absorption from point of generation (distance & time)
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3) Determination of background

Performed MCNP Monte Carlo simulation to determine
cosmic ray neutrons at the sea level

Only 3.5 % of cosmic-ray fast neutrons create signals
(proton + neutron) like IBD events:

Cosmic-ray: 112,000 counts/day
Antineutrino: 1000 counts/day



4a) Reduction of background
(interfering cosmic ray neutrons through proton recoil)

Performed MCNP Monte Carlo simulation to determine expected
position and energy of positron (for IBD) and the competing effect,
i.e., proton recoil due to cosmic ray neutrons

IBD events .
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e 5000 fast neutron counts/day
e 850 antineutrino counts/day
* SNR="0.2 SNR




4a) Reduction of background

(determination of quenching factor due to fast neutron
interactions in CHANDLER)

Performed measurements at the Duke
TUNL facility using the MicroCHANDLER
which was exposed to beams of
neutrons at different fast energies due
D-D and D-T interactions

Neutron energy (MeV) Neutron Energy (MeV)

D-D interaction D-T Interaction

5.32 18.35

6.5 19.86

7.6 21.2
8.65 22.45
9.68 23.64
10.68 24.78
11.67 25.90

12.66 26.75



MCNP Monte Carlo Simulation for determination of energy
deposition

Fast neutron interactions with detector material:
i) Proton recoil
ii) Gamma ray due non-elastic interactions, e.g., 12C excitation

En=5.32 MeV En =26.75 MeV
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4b) Reduction of background
(Shielding)

Performed Monte Carlo simulation by placing a High Density
Polyethylene (HDPE) shield in front of beam of cosmic ray
neutrons
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With 1m of shielding:
60 fast neutron counts/day

850 antineutrino counts/day
SNR =~14



NUC|ear data needs IBD Neutron Spectrum
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Neutron cross sections (ENDF/B-VIII.0) for scintillators and absorbers
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Nuclear data needs

* Particle transport performed

* For IBD neutron simulation for optimization of detection
system; data available for all the elements

* For cosmic-ray neutron simulation (with average energy
of 107 MeV) for determination and removal of
interference (noise) and shielding; there is a need for data
and further evaluation of the available data

* Additionally, for NASA’s space activities

» data is needed for both fast neutrons and charged
particles



Development of physics-based machine-learning (ML) System
(For reactor monitoring, safety and safeguards applications) (1)

 Machine Learning (ML) system requires the availability of both measured
and computed data in real time

 The standard Monte Carlo or deterministic methods are not practical for
real-time computation

 We have developed the RAPID (Real-time Analysis for Particle Transport
and In-situ Detection) code system that solves particle transport problems
by a hybrid deterministic and Monte Carlo technique:

(fission density) F; = %Zj a;;F;
(detector response) R; = X Bi;F;

where, a;;and [5; ; are pre-calculated using the Monte Carlo method as
a function of different parameters



Development of physics-based machine-learning system
For reactor monitoring, safety and safeguards applications (2)

Using ML learning
algorithms, e.g., Least
squares Minimization
(LSM), or Maximum
Likelihood Estimation
Maximization (MLEM),
which compare
CHANDLER (in multi-
modal mode) and
RAPID data to
determine various
parameters
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Thanks

Questions?
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