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Use of Particle Transport (PT)
1) Determination of source & detector response 

𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑 =< 𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 >
Where 𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝 is obtained by

𝐻𝐻𝜓𝜓𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑆𝑆𝑝𝑝𝑝𝑝𝑝𝑝
2) Design of detector

3) Determination of background 

4) Reduction of background, 
• identification of interfering noise and its removal 
• Shielding

5) Source image reconstruction and inference of physical 
parameters



Antineutrino detection
• Inverse beta decay (IBD) interaction

�̅�𝜐𝑑𝑑 + 𝑝𝑝 → 𝑒𝑒+ + 𝑛𝑛
• Detection process by coincidence of two signals: 

1. light signal from scintillation materials caused by energy deposition 
due to positron annihilation

2. Light signal from scintillation materials caused by energy deposition 
due to neutron capture process 01𝑛𝑛 + 3

6𝐿𝐿𝐿𝐿 → 2
4𝐻𝐻𝑒𝑒 + 1
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CHANDLER detection system

�̅�𝜈𝑑𝑑

LiF-ZnS(Ag) 
sheets

𝑒𝑒+ + 𝑒𝑒− -> 2γ
Light is generated due to γ-
ray interaction with 
scintillating cubes

3
6𝐿𝐿𝐿𝐿(𝑛𝑛,α)13𝐻𝐻

Light is generated due to α-
particle with scintillating sheet

CHANDLER: 16x16x16
(to be built) miniCHANDLER: 5x7x7

(tested at the North Anna 
Power station)

microCHANDLER: 3x3x3
(used for determination 
of proton quenching)



2) Detector Design : Size of cubes & thickness of Li 
sheets

• Performed MCNP Monte Carlo sensitivity analyses
• Efficiency of absorption in Li-6

• Absorption  from point of generation (distance & time)

85% of neutrons are 
absorbed within one cell 
from source cell

90% of neutrons are 
absorbed within 200 𝜇𝜇𝑠𝑠



Performed MCNP Monte Carlo simulation to determine 
cosmic ray neutrons at the sea level

Only 3.5 % of cosmic-ray fast neutrons create signals 
(proton + neutron) like IBD events:

Cosmic-ray: 112,000 counts/day
Antineutrino: 1000 counts/day

3) Determination of background



4a) Reduction of background
(interfering cosmic ray neutrons through proton recoil)

Cosmic ray eventsIBD events

• 5000 fast neutron counts/day
• 850 antineutrino counts/day
• SNR = ~0.2 SNR

Performed MCNP Monte Carlo simulation to determine expected 
position and energy of positron (for IBD) and the competing effect , 
i.e., proton recoil due to cosmic ray neutrons

Sp
ac

e-
en

er
gy

 c
or

re
la

tio
n



4a) Reduction of background
(determination of quenching factor due to fast neutron 

interactions in CHANDLER)
• Performed measurements at the Duke 

TUNL facility using the MicroCHANDLER
which was exposed to beams of 
neutrons at different fast energies due 
D-D and D-T interactions

Neutron energy  (MeV) 
D-D interaction

Neutron Energy (MeV) 
D-T Interaction

5.32 18.35
6.5 19.86
7.6 21.2

8.65 22.45
9.68 23.64

10.68 24.78
11.67 25.90
12.66 26.75



MCNP Monte Carlo Simulation for determination of energy 
deposition

Fast neutron interactions with detector material:
i) Proton recoil
ii) Gamma ray due non-elastic interactions, e.g., 12C excitation

En = 5.32 MeV En = 26.75 MeV



4b) Reduction of background
(Shielding)

• With 1m of shielding:
• 60 fast neutron counts/day
• 850 antineutrino counts/day
• SNR = ~14                 

(m)

Performed Monte Carlo simulation by placing a High Density 
Polyethylene (HDPE) shield in front of beam of cosmic ray 
neutrons



Nuclear data needs

• Common elements 
used in antineutrino 
detection system

• scintillators
• C, H, O, F, N, S, Zn

• Absorbers
• Li, B, Gd, Cd

Eave = 107 MeV 

Cosmic-ray neutron spectrum

IBD Neutron Spectrum

Emax =148 keV
Eave = 16 keV



C-12 Li-6 O-16

F-19

N-14

S-32

Zn-64 Gd-158 Gd-112

Neutron cross sections (ENDF/B-VIII.0) for scintillators and absorbers



Nuclear data needs

• Particle transport performed
• For IBD neutron simulation for optimization of detection 

system; data available for all the elements

• For cosmic-ray neutron simulation (with average energy 
of 107 MeV) for determination and removal of 
interference (noise) and shielding; there is a need for data 
and further evaluation of the available data

• Additionally, for NASA’s space activities 
• data is needed for both fast neutrons and charged 

particles



Development of physics-based machine-learning (ML) System
(For reactor monitoring, safety and safeguards applications) (1)

• Machine Learning (ML) system requires the availability of both measured 
and computed data in real time

• The standard Monte Carlo or deterministic methods are not practical for 
real-time computation

• We have developed the RAPID (Real-time Analysis for Particle Transport 
and In-situ Detection) code system that solves particle transport problems 
by a hybrid deterministic and Monte Carlo technique:

(fission density) 𝑭𝑭𝒊𝒊 = 𝟏𝟏
𝒌𝒌
∑𝒋𝒋 𝒂𝒂𝒊𝒊,𝒋𝒋𝑭𝑭𝒋𝒋

(detector response) 𝑹𝑹𝒊𝒊 = ∑𝒋𝒋𝜷𝜷𝒊𝒊,𝒋𝒋𝑭𝑭𝒋𝒋

𝑤𝑤𝑤𝑒𝑒𝑤𝑤𝑒𝑒, 𝑎𝑎𝑖𝑖,𝑗𝑗 and 𝛽𝛽𝑖𝑖,𝑗𝑗 are pre-calculated using the Monte Carlo method as 
a function of different parameters



Development of physics-based machine-learning system
For reactor monitoring, safety and safeguards applications (2)

CHANDLER multi-
modal detection

Using ML learning 
algorithms, e.g., Least 
squares Minimization 
(LSM), or Maximum 
Likelihood Estimation 
Maximization (MLEM), 
which compare 
CHANDLER (in multi-
modal mode) and 
RAPID data to 
determine various 
parameters

Nuclear 
reactor



Thanks
Questions?
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