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well-defined cross section 🙂 
recoil electrons point in neutrino direction 🙂 
sensitive to all active flavors 🙂 
higher energy signal than coherent scattering (MeV vs. keV) 🙂 
small cross section 🙁 
difficult to reconstruct neutrino energy 🙁 
no delayed coincidence signature 🙁
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Neutrino-electron Elastic 
Scattering: Beyond Tree Level
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hadronic uncertainty is the main theory error: 0.2-0.4%
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Neutrino-Electron Elastic 
Scattering Cross Section
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substantially smaller cross section than IBD 
less different at lower energy 
very directional differential cross section 
above 4 MeV 
problem: multiple Coulomb scattering of  
recoil electrons: limits Cherenkov detector 
“pointing” and background discrimination
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Possible Reasons to Use Electron ES
detect near or below IBD threshold 

probe electroweak physics 

search for non-zero neutrino 
magnetic moment or milli-charge 

oscillation measurements? 

directional remote monitoring of  
reactors (this talk) 

need huge detectors (small cross 
section) 

need recoil electron directional 
reconstruction 5
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Pointing: Estimate Multiple Coulomb 
Scattering in Super-K Solar ν Data
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angular resolution and multiple Coulomb scattering 
reconstruction checked with an electron LINAC at 4.5 MeV 
most of  the angular tail is from events with a lot of  scattering 
208Tl and 214Bi tend to have more effective scattering (due to 
lower energy and/or multiple electrons) 
perhaps LArTPC can do a lot better than this
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Radioactive Backgrounds

7

lots of  detectors have electrons that can serve as target for the signal … 
…but all have different radioactive background 
choose here: water target (either water Cherenkov or water-based liquid 
scintillator) 
… as it can make use of  directionality in large detectors 
here’s an example of  a background model for Super-K
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Radioactive Backgrounds: From 
the Detector Materials
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214Bi is a Radon daughter and  is therefore found 
everywhere 
208Tl (and 40K) are produced by the detector boundaries;                                               
not much will be in the water (or scintillator) ⟹remove by                                              
self-shielding 
calculate required radiopurity                                                         
for a given detector size 
similar for scintillator (but                                                   
should consider α’s as well) 
liquid noble gases is a different                                            
case, however
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Cosmogenic Radioactive 
Backgrounds
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basically just 16O spallation for water (or 12C for scintillator) 
most of  the spallation from showering muons, in particular hadronic 
showers 
FLUKA simulations in water by Super-K and Shirley Li/John Beacom   
use neutron tagging to measure hadronic showers 
more data will come from Super-K-Gd
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Cosmogenic Radioactive 
Backgrounds
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Super-K also measures the neutron and spallation yields:
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w/o tagged neutrons with tagged neutrons

16N
16N

12B 12B12N 12N8Li/8B 8Li/8B
9Li 9C/8He

9C/8He 9Li

15C 15C
11Be

11Be

Isotope Yield (10-7cm2/gμ) E 
16N 27.35±0.34±0.28 10.4
12B 12.91±0.06±0.12 13.4

8Li/8B 5.11±0.10±0.50 ~13.5
12N 1.717±0.036±0.01 16.4
15C 1.57±0.26±0.02 9.8
9Li 0.67±0.19±0.01 13.6/10



2700 m.w.e, SNO 
Rn concentration

3kt water 
detector

cosmogenic

Cosmogenic Radioactive 
Backgrounds: Depends on μ Flux
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IBD background assumes 20% 
mistag rate of  neutrons 
assumed depth is the same as 
Super-K 
detector wall materials 
subdominant by self-shielding, 
PMTs are omitted 
Rn (214Bi) is the main problem 
need to reduce contamination from 
SNO equivalent to 0.01 of  SNO 
maybe using tight water flow 
control, similar to Super-K?
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Water Flow Control in Super-K
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when Super-K fixed 
the water leak in 2018, 
water piping was also 
upgraded 
using carefully chosen 
injection and draining 
points as well as 
temperature control of  
injection water, 
convective cells are 
suppressed 
sometimes you need 
hydrodynamic data, 
not nuclear data!
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Example: 2000 m.w.e, 0.01 SNO 
Radon Concentration in Water
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simulated signal of  a ~1kton fiducial mass 
detector from a 3.8 GW reactor 13 km away 
from the detector, observed for five years 
uses BONSAI event reconstruction (as does 
Super-K)
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3σ significance 
detection

Hellfeld, Bernstein, 
Dazeley, Marianno

signal energy

signal direction

signal and backgrounds



no reactor IBDs (high threshold for anti-neutrinos) 
detailed tracking may result in superior pointing 
similar detector mass as water possible (within a factor of  two or so) 
similar number of  electrons/g (20/(40g/mol) compared to 10/
(18g/mol)) 
may need a different detector design than DUNE to get the best 
tracking and low energy threshold, high signal/noise (e.g. two-phase 
and/or pixel readout); would probably need some R&D 
need to know detector performance for ~2-8 MeV electrons, 
radioactivity (e.g. 39Ar or 42Ar, Radon daughters, neutron captures, 
cosmogenic) 
some data exists (to estimate DUNE solar neutrino sensitivity)

Liquid Argon TPCs
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not the easiest way to detect reactor neutrinos from a 
distance! 
main advantage: directional detection (although coherent 
scattering may be able to this also) 
needs huge detectors 
realistically, this means either water (or water-based) 
detectors or liquid Argon TPCs (no IBD background 
there!) 
a lot of  the required data already exists for water; (I don’t 
know how much data exists for LArTPCs, but some does)

Summary
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