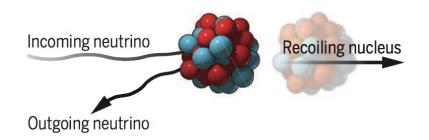
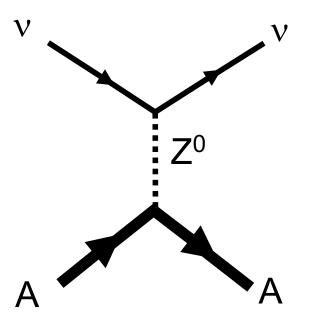
CEvNS Backgrounds

... focusing on the "friendly fire" variety

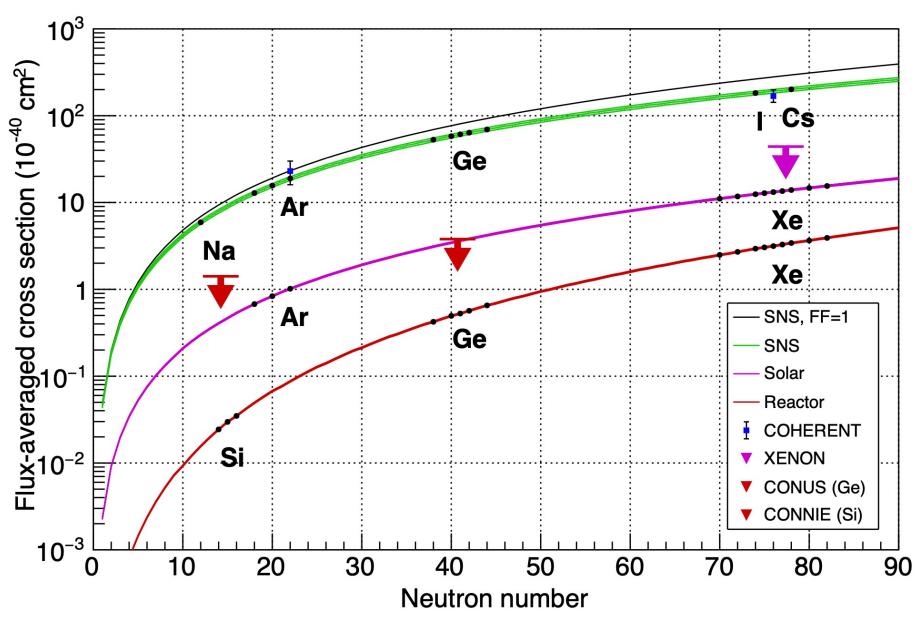



Kate Scholberg Wondram workshop June 24, 2021

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV



Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

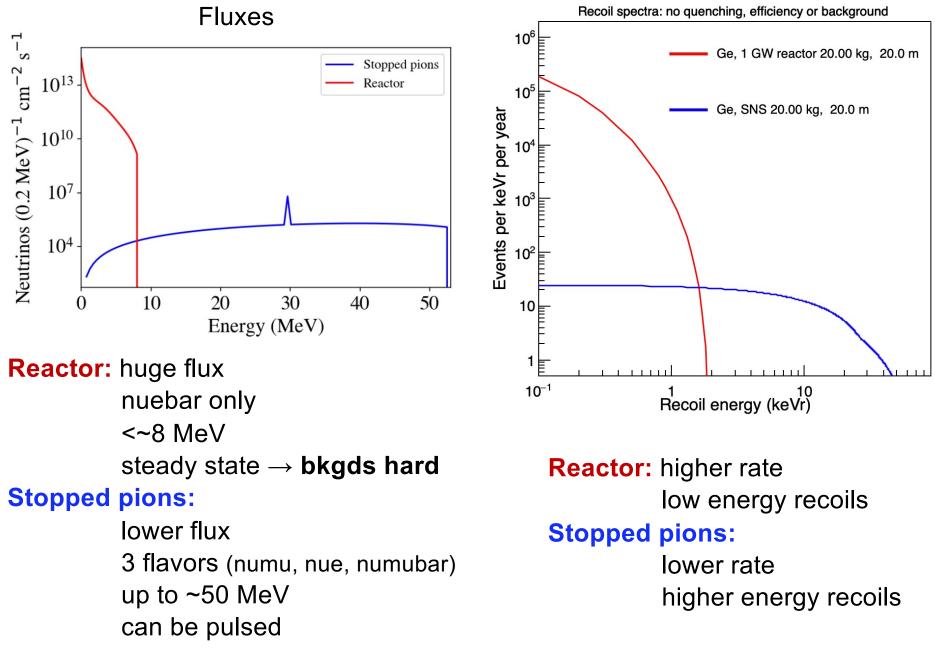
For $QR \ll 1$, [total xscn] ~ A^2 * [single constituent xscn]

A: no. of constituents

Status of CEvNS measurements

CEvNS Efforts Worldwide

	Experiment	Technology	Location	Source	
	COHERENT	Csl, Ar, Ge, Nal	USA	πDAR	
	ССМ	Ar	USA	πDAR	
	CONNIE	Si CCDs	Brazil	Reactor	
	CONUS	HPGe	Germany	Reactor	
Reactors	MINER	Ge/Si cryogenic	USA	Reactor	
	NuCleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe	Reactor	
	∨GEN	Ge PPC	Russia	Reactor	
-	RED-100	LXe dual phase	Russia	Reactor	
	Ricochet	Ge, Zn bolometers	France	Reactor	sin Mrite
	TEXONO	p-PCGe	Taiwan	Reactors	


+ DM detectors, +directional detectors +more... many novel low-background, low-threshold technologies

CEvNS Efforts Worldwide

	Experiment	Technology	Location	Source	
	COHERENT	Csl, Ar, Ge, Nal	USA	πDAR	
	ССМ	Ar	USA	πDAR	
	CONNIE	Si CCDs	Brazil	Reactor	
	CONUS	HPGe	Germany	Reactor	
Reactors	MINER	Ge/Si cryogenic	USA	Reactor	
	NuCleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe	Reactor	
	∨GEN	Ge PPC	Russia	Reactor	
	RED-100	LXe dual phase	Russia	Reactor	New York Contraction of the second seco
	Ricochet	Ge, Zn bolometers	France	Reactor	
	TEXONO	p-PCGe	Taiwan	Reactors	

+ DM detectors, +directional detectors +more... many novel low-background, low-threshold technologies variety of materials

Reactors vs stopped-pion neutrinos for CEvNS

Backgrounds

Usual suspects:

- cosmogenics
- ambient and intrinsic radioactivity
- detector-specific noise and dark rate

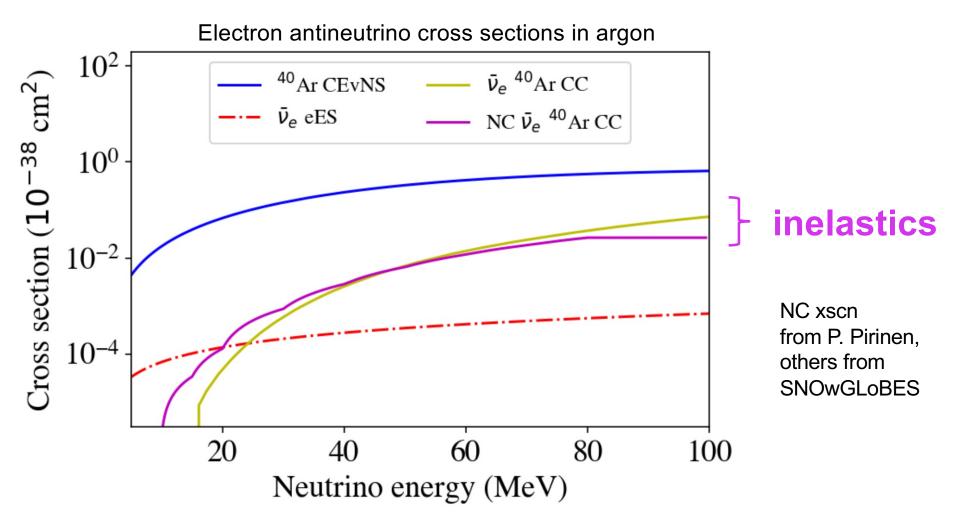
Neutrons are especially not friends*

A constraint of the second second

These are very detector/site/shielding-specific ... nasty ones are *correlated with source*. Here will focus on `friendly' neutrino-induced bg

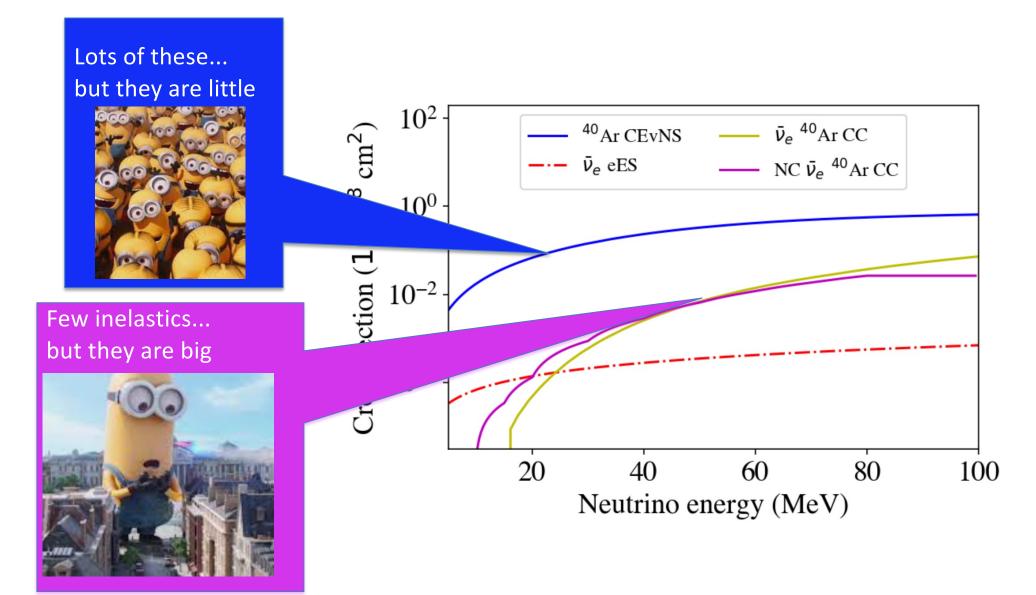
CONUS arXiv:1903.09269

Neutrino interactions in the few-few 10's of MeV range


	Electrons	Protons	Nuclei
Charged	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
	l [[] √ _e ► ♥ e ⁻	e ⁺ γ ν _e nγ	r_{v_e} r_{v_e} r_{v_e} Various possible
Neutral	ve-	Elastic scattering P	$ \nu + A \rightarrow \nu + A^* $ ejecta and deexcitation products
current	Useful for pointing	very low energy recoils	$\nu + A \rightarrow \nu + A$ $\nu \dots \qquad $

Neutrino interactions in the few-few 10's of MeV range

inelastics

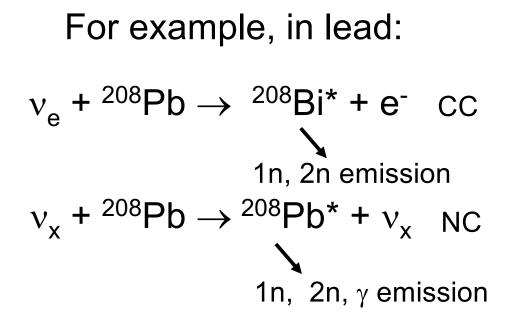

	Electrons	Protons	Nuclei	
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$\nu_e + (N, Z) \rightarrow e^- + (I)$ $\bar{\nu}_e + (N, Z) \rightarrow e^+ + (I)$, , , , , , , , , , , , , , , , , , ,
Charged current	e	$ \begin{array}{c} \gamma \\ e^+ & \gamma \\ \overline{\nu}_e \\ n & \gamma \end{array} $	ν _e ······ γ ····· γ ······ e ^{+/-}	Various possible ejecta and
Neutral	ve	Elastic scattering P	$\nu + A \rightarrow \nu + A^*$	deexcitation products
current	Useful for pointing	very low energy recoils		v oherent astic (CEvNS)

Example: argon*

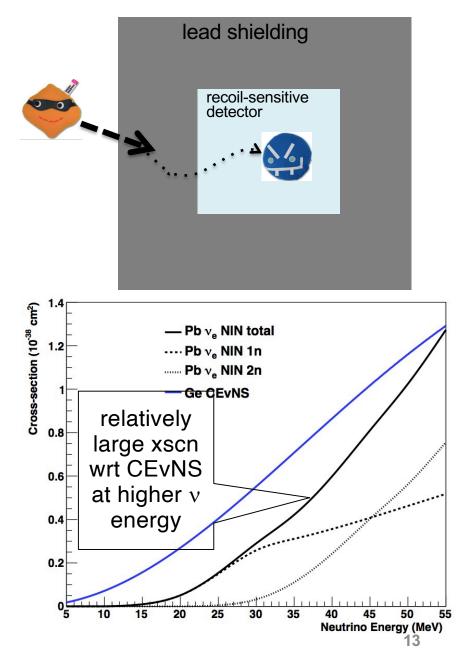
*not actually the best example, since inelastic interactions have high thresholds wrt reactor v's

Example: argon

For CEvNS with reactor neutrinos:


Inelastic neutrino interactions can be considered both a signal and a background.

If you just want lots of neutrino counts, doesn't matter

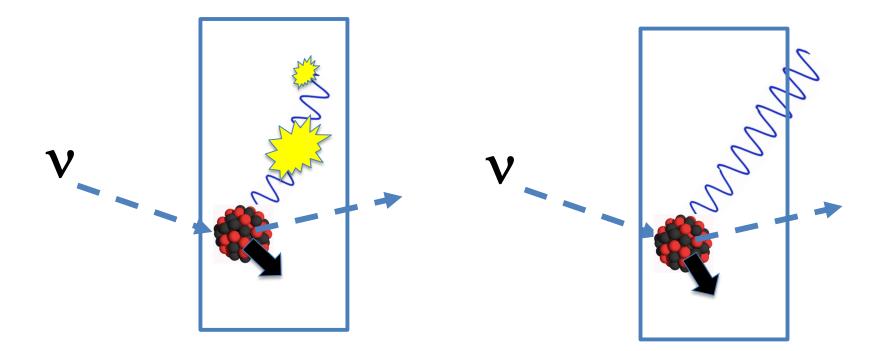

But you do want to know the inelastic contribution (event-by-event or statistically):

- for physics (BSM, nuclear physics)
- for determining neutrino absolute flux and spectrum for any application

Neutrino Induced Neutrons (NINs)

- reactor neutrinos are mostly below threshold for NINs in lead
- however there could be some materials which create NINs (poorly known xscns!)
- IBD in shielding (or untagged positrons) also make NINs!

Inelastics as backgrounds for CEvNS


Charged-current:

- Big old lepton (positron for nuebar) usually tags the interaction
- But: can have NINs or gammas in shielding

Neutral-current:

- Cross sections tend to be lower than CC
- However, interaction products are potentially harder to disentangle
 - NINs (nucleons)
 - De-excitation gammas (taggable)
 - Also: hit-and-run bg...

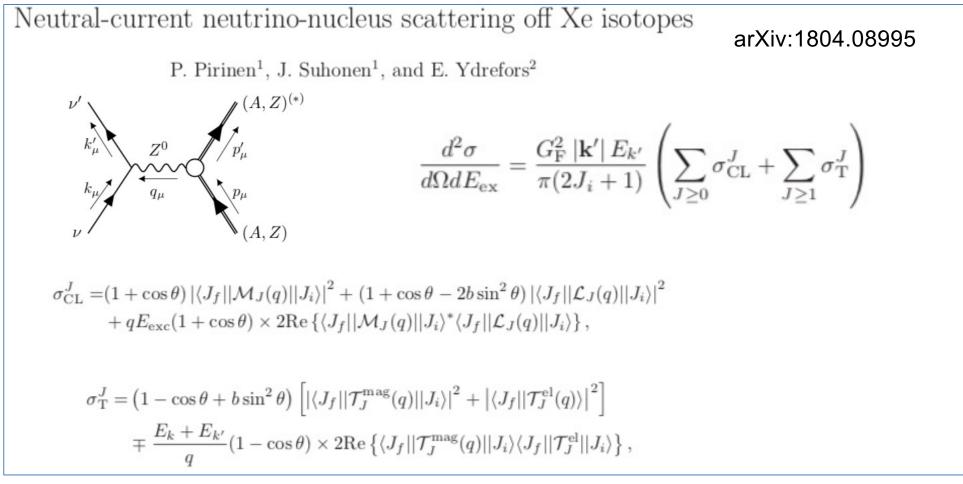
Neutral-current backgrounds for CEvNS

crash & flash: ~nothing in CEvNS ROI (but could look for the flash in higher energy range, as signal in itself) crash & dash: no gamma seen, low-energy recoil could fake CEvNS

What is known about inelastic neutrino-nucleus cross sections at low energy? very nucleus-specific!

- a few measurements at stopped-pion energy (not nuebar); only two (on ¹²C) @10% level
- reactor neutrinos on deuterium
- not much else in the way of measurements

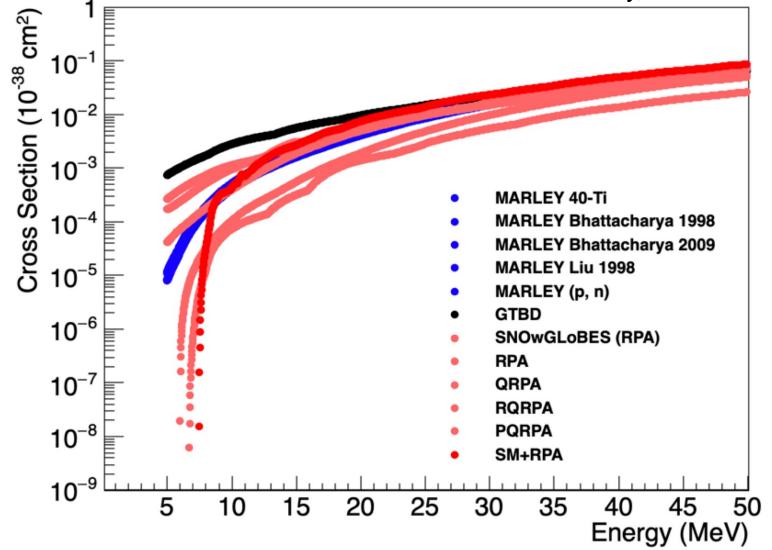
TABLE VII. Experimentally measured (flux-averaged) cross sections on various nuclei at low energies (1–300 MeV). Experimental data gathered from the LAMPF (Willis *et al.*, 1980), KARMEN (Bodmann *et al.*, 1991; Zeitnitz *et al.*, 1994; Armbruster *et al.*, 1998; Maschuw, 1998; Ruf, 2005), E225 (Krakauer *et al.*, 1992), LSND (Athanassopoulos *et al.*, 1997; Auerbach *et al.*, 2001; Auerbach *et al.*, 2002; Distel *et al.*, 2003), GALLEX (Hampel *et al.*, 1998), and SAGE (Abdurashitov *et al.*, 1999; Abdurashitov *et al.*, 2006) experiments. Stopped π/μ beams can access neutrino energies below 53 MeV, while decay-in-flight measurements can extend up to 300 MeV. The ⁵¹Cr sources have several monoenergetic lines around 430 and 750 keV, while the ³⁷Ar source has its main monoenergetic emission at $E_{\nu} = 811$ keV. Selected comparisons to theoretical predictions, using different approaches are also listed. The theoretical predictions are not meant to be exhaustive.


Isotope	Reaction Channel	Source	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)
^{2}H	$^{2}\mathrm{H}(\nu_{e},e^{-})pp$	Stopped π/μ	LAMPF	52 ± 18 (tot)	54 (IA) (Tatara, Kohyama,
¹² C	$^{12}\mathrm{C}(\nu_{e},e^{-})^{12}\mathrm{N}_{\mathrm{g.s.}}$	Stopped π/μ Stopped π/μ	KARMEN E225	$9.1 \pm 0.5(\text{stat}) \pm 0.8(\text{sys})$ $10.5 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	and Kubodera, 1990) 9.4 [Multipole](Donnelly and Peccei, 1979) 9.2 [EPT] (Fukugita, Kohyama,
	$^{12}\mathrm{C}(\nu_{e},e^{-})^{12}\mathrm{N}^{*}$	Stopped π/μ Stopped π/μ	LSND KARMEN	$\begin{array}{l} 8.9 \pm 0.3 (\text{stat}) \pm 0.9 (\text{sys}) \\ 5.1 \pm 0.6 (\text{stat}) \pm 0.5 (\text{sys}) \end{array}$	and Kubodera, 1988). 8.9 [CRPA] (Kolbe, Langanke, and Vogel, 1999) 5.4–5.6 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
		Stopped π/μ	E225	3.6 ± 2.0 (tot)	4.1 [Shell] (Hayes and Towner, 2000)
	${}^{12}C(\nu_{\mu},\nu_{\mu})^{12}C^{*}$ ${}^{12}C(\nu,\nu)^{12}C^{*}$ ${}^{12}C(\nu_{\mu},\mu^{-})X$	Stopped π/μ Stopped π/μ Stopped π/μ Decay in flight	LSND KARMEN KARMEN LSND	$\begin{array}{l} 4.3 \pm 0.4(\text{stat}) \pm 0.6(\text{sys}) \\ 3.2 \pm 0.5(\text{stat}) \pm 0.4(\text{sys}) \\ 10.5 \pm 1.0(\text{stat}) \pm 0.9(\text{sys}) \\ 1060 \pm 30(\text{stat}) \pm 180(\text{sys}) \end{array}$	 2.8 [CRPA] (Kolbe, Langanke, and Vogel, 1999) 10.5 [CRPA] (Kolbe, Langanke, and Vogel, 1999) 1750–1780 [CRPA] (Kolbe, Langanke,
	(μ)	, ,			and Vogel, 1999) 1380 [Shell] (Hayes and Towner, 2000) 1115 [Green's Function] (Meucci, Giusti,
	${}^{12}\mathrm{C}(\nu_{\mu},\mu^{-}){}^{12}\mathrm{N}_{\mathrm{g.s.}}$	Decay in flight	LSND	$56 \pm 8(\text{stat}) \pm 10(\text{sys})$	and Pacati, 2004) 68–73 [CRPA] (Kolbe, Langanke, and Vogel, 1999)
⁵⁶ Fe	56 Fe $(\nu_e, e^-)^{56}$ Co	Stopped π/μ	KARMEN	$256 \pm 108 (\text{stat}) \pm 43 (\text{sys})$	56 [Shell] (Hayes and Towner, 2000) 264 [Shell] (Kolbe, Langanke, and Martínez-Pinedo, 1999)
⁷¹ Ga	71 Ga $(\nu_{e}, e^{-})^{71}$ Ge	⁵¹ Cr source ⁵¹ Cr	GALLEX, ave. SAGE	$0.0054 \pm 0.0009(tot)$ $0.0055 \pm 0.0007(tot)$	0.0058 [Shell] (Haxton, 1998)
¹²⁷ I	127 I $(\nu_e, e^-)^{127}$ Xe	³⁷ Ar source	SAGE SAGE LSND	0.0055 ± 0.0006 (tot) 0.0055 ± 0.0006 (tot) 284 ± 91 (stat) ± 25 (sys)	0.0070 [Shell] (Bahcall, 1997) 210–310 [Quasiparticle] (Engel, Pittel, and Vogel, 1994)

1321

What about theoretical predictions?

Available calculations are not copious, but improving


Example:

• Development of MARLEY is promising

Example of variation in theory predictions at low energy

E. Conley, S. Gardiner

This is for v_e CC, but gives an idea of (large) uncertainties for these kinds of calculations

What do we need?

- Direct measurements @ reactor energy, if possible (hard)
- More theory!

(nuclear structure theorists, please help!)

- Measurements to validate theory
 - stopped-pion source may still help with this, even if energy range and flavors do not match reactor fluxes
- Priority materials:

Ge, Si, Ca, W, O, Pb, Xe, Na, I, Ar, Al, Zn, S, F [COHERENT: Ar, Ge, Na, I @SNS]

Summary

- Reactor CEvNS has high rate, but very low recoil energy
- Backgrounds are the primary difficulty
- Source-correlated neutrinos create non-CEvNS (inelastic) background
 - probably quite small at reactor energies but large uncertainties
- Both measurements and theory welcome