

CEvNS Signal

Coherent ν -Nucleus Scattering

47 years ago, Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) was predicted with the realization of the neutral weak current.

D. Z. Freedman, PRD 9 (5) 1974

- Neutrino scatters coherently off all
 Nucleons → cross section enhancement:
 σ ∝ N²
- Initial and final states must be identical: Neutral Current elastic scattering
- Nucleons must recoil in phase →low momentum transfer qR <1 → *very* low energy nuclear recoil

Neutron number

CEvNS: A collaborative community

CEvNS: Exciting Decade ahead of us

	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030's
Reactor Neutrino Sourc	ces													
Hartlepool Site				BG studies										
Angra Site				location & shield	ding upgrades									
CHOOZ VNS Site		BG studies		Site Pre	paration	Operations								
CONNIE	40 g			10 g skipper	100g skipper		1 kg skipper			10kg skipper				
CONUS														
MINER														
RED-100														
TEXONO			PIRE R8	kD										
NUCLEUS						10g CaWO4 & Al20	3	kg-scale1kg: Ge-	+ Si					
XENON														
NEWSG			Fea	asability Studies										
RICOCHET			_											
LAr			Det	tector R&D										
Spallation Neutrino Sou	urces													
SNS FTS	1.1 MW	1.4	MW upgrade			1.7 MW upgrad	e	Ep=1.3 GeV Upg	rade			2.0 MW upgrade		
SNS STS														
Lujan Center							30 ns Upgrade							
ESS COLIFORNIT COL														
COHERENT - CSI	20 ko/d	terver of d				75				10				
- LAr	20 KeV 1	Inreshold		10 40		/5	окд	100 1/2		10				
- Ge				тока	2 2 T			100 Kg	Cruce Mal					
					5.5 1		100 kg		Cry0 Nai					
CCM - 1st detector							100 Kg							
- 2nd detector														
8B Solar Neutrinos	1	1	1	1								1		
Xenon NT														
LZ														
SuperCDMS														
Darkside-LM														
Atmospheric and Diffus	se Supernova Neu	trino Backgrouino	d											
DARWIN														
Galactic Supernova Neutrinos Only														
Darkside-20k														
ARGO														

Measuring the recoil: Quenching Factor

Improving the Precision for COHERENT CsI: New Quenching Factor

- Uncertainty on CEvNS rate
 improved from 25% to 4%
- Situation even more challenging for lower energy neutrinos at reactors

Another high energy example: COHERENT LAr

- Global analysis of world data
- Parametric model fit according to PDG prescription
- 2% uncertainty on CEvNS in ROI

Lowering thresholds can counteract QF uncertainty

Example: Germanium

- CONUS Rx Ge experiment producing data
- Growing confusion as to low-energy QF, with a major impact on expected rate above threshold

Is this the Migdal effect?

Example: Liquid Xenon

- LUX/LZ measurements at TUNL had dramatic impact on predicted Rx CEvNS signal
- Measurements continuing in LXe and LAr with CHILLAX

Energy (keV)

10

Example Silicon

- Dramatic drop below model prediction observed in silicon semiconductors. Implies significant impact
- Challenging measurement campaign to confirm with SuperCDMS Si detectors at TUNL with 55 keV ± 1 keV neutron beam

ſ	Energy	$CE\nu NS$ -rate	$CE\nu NS$ -rate	95% C. L.
	range (keV)	Lindhard	Chavarria	from data
ſ	0.075 - 0.275	11.4	4.8	197
	0.275 - 0.475	3.6	1.3	109
	0.475 - 0.675	0.8	0.3	47

TABLE I. Expected rate from $CE\nu NS$, in events/day/kg/keV, assuming quenching factors from Lindhard [57] and Chavarria [52] together with the 95% CL limit from the data presented in this paper.

FIG. 20. CE ν NS event rate: 95% confidence level limit from the reactor on - off measurement (solid line) and neutrino signal expected from the Lindhard [57] (dotted line) and Chavarria [52] (dashed line) quenching factors.

Example: Nal[TI]

- Long history of Nal[TI] QF measurements
- Still a lot of variance
- Now testing variance across crystal manufacture technique (ANAIS and COSINE)
- Next up: varying dopant concentration & temperature

Example: Gaseous Ne

- Never before measured, so CEvNS signal unknown
- NEWS-G measurement at TUNL
- Challenge: scattering neutrons on gas

A Caveat: Bolometric Detectors

- Bolometric detectors (NUCLEUS, RICOCHET) do not suffer from QF loss of signal. Many of these also have extremely low thresholds
- Such detectors optimally suited to measure neutrinos
 <1.8 MeV IBD threshold
- Detector response should still be demonstrated

Actionable next steps

- More thorough measurement campaigns needed across all detector systems
- Unified approach to evaluating new and existing data
- Modeling remains a challenging (and perhaps unattainable) goal. Empirical measurements preferred
- Possible scoping study: should a decision be made on bolometric vs calorimetric detector systems? Do we avoid QF's all together? Such a study seems unlikely to be effective.

Trade-offs towards improved precision

- Small, purpose built detectors required to reduce multiple scattering.
- More beam-time needed at more facilities, but these facilities are not often run by agencies interested in this problem.
- Beam-time can be reduced with larger backing detector arrays, which also improve fidelity of results.
- But reduction of systematic uncertainties likely requires tuning of beam energy, as well as scanning over detector characteristics (e.g. doping concentration). Will require more beam time.
- Can move to higher neutron flux, but often this is also controls the neutron energies (e.g. 55 keV SuperCDMS run).
- Control of kinematics via neutron collimation, energy tuning, monochromaticity and beam pulsing will burn down systematic uncertainties.