

Current & Future Reactor Antineutrino Measurements

J. Pedro Ochoa-Ricoux

University of California at Irvine WoNDRAM, June 2021

Introduction

• Main question addressed by this talk:

What is the **state of the art knowledge** on reactor antineutrino emission from direct measurements?

• Will focus on experiments using the Inverse Beta Decay (IBD) reaction, which is where our best knowledge currently comes from

θ₁₃ Experiments

• There was a very significant leap forward with the advent of the experiments designed to measure the θ_{13} mixing angle:

Need to keep uncertainties under control:

- Need large statistics
- Need near & far detectors to cancel systematic uncertainties!

Note: all of these experiments use **Low Enriched Uranium (LEU)** reactors

(Disclaimer: I am a Daya Bay collaborator)

Total Yield

- Start with the total yield, i.e. time-averaged yield from all isotopes (²³⁵U, ²³⁹Pu, ²³⁸U and ²⁴¹Pu)
- Average global yield (mean cross-section per fission) now determined to < 1%

Data/Prediction

 Discrepancy with Huber+Mueller (HM) model is the so-called Reactor Antineutrino Anomaly

* see PRL 123, 111801 (2019). There is also a recent not-yet-published measurement from RENO that is consistent

Spectral Shape

• Have also measured the total prompt energy spectrum very precisely:

Challenges

- These results cannot be directly adopted in other scenarios/experiments:
 - They correspond to a specific combination of fission fractions
 - Yield and spectral shape vary from isotope to isotope
 - ²³⁹Pu yield is lower than ²³⁵U, so total rate will decrease as fuel cycle progresses
 - They are folded in with the detector response (i.e. they are in terms of E_{prompt})
- Solution? Two-pronged approach:
 - Look at the yield's evolution with fuel composition: allows to disentangle the contribution from each isotope
 - (ii) Unfold the spectra ($E_{\text{prompt}} \rightarrow E_{\bar{\nu}_{o}}$)

Evolution of fission fractions with burn-up

0.30

 F_{239}

0.32

0.34

effective ²³⁹Pu fission fraction

0.24

0.26

0.28

fission]

 cm^2 /

 $[10^{-43}]$

0.36

(i) Isotopic Yields and Spectra

The evolution with fuel composition allows to extract the individual yields and spectra for the two main isotopes: ²³⁵U and ²³⁹Pu

Comments: have to make conservative assumptions about the contributions from ²³⁸U and ²⁴¹Pu. RENO released consistent yields in PRL 122, 232501 (2019)

(ii) Unfolding

• "Remove" the detector response by unfolding the spectra (3 different methods):

Isotopic spectra uncertainties dominated by statistics and ²³⁸U & ²⁴¹Pu model uncertainties

HEU Experiments

 Placing a detector very near a Highly Enriched Uranium (HEU) reactor enables a direct measurement of the ²³⁵U yield and spectrum

Joint analyses are ongoing between PROSPECT and STEREO (see backup), as well as between PROSPECT and Daya Bay

Goal is to ensure consistency and increase precision

²³⁵U spectrum uncertainty in 2-5 MeV region is ~4% for PROSPECT, STEREO and Daya Bay experiments (see backup)

235U Yield

• So far LEU and HEU experiments give us a consistent story for the ²³⁵U yield:

With ~2.5% precision, STEREO has the most precise pure ²³⁵U yield measurement

Note: there are many other short baseline LEU and HEU experiments that we do not have time to cover here

Future

- Expect more results from Daya Bay and RENO with their final data sets
- Expect new results from STEREO with ~twice the current data
- The PROSPECT collaboration is pursuing an upgrade
- JUNO will deploy a satellite detector called TAO near one of the Taishan 4.6 GW_{th} cores:

Fine Structure and

- 1 ton fiducial Gd-LS volume
- SiPM and Gd-LS at -50°C
- ~1.7% @ 1 MeV energy resolution
- Reference spectrum for JUNO and other experiments
- Benchmark for nuclear databases
- Isotopic yields and spectra

0.1

0.05

0

7 8 9 Neutrino energy [MeV]

Summary & Outlook

- Neutrino physics have been done with nuclear reactors to exquisite precision:
 - Despite lacking a precise enough prediction of reactor antineutrino fluxes!
- Great progress in characterizing reactor antineutrino emission achieved in the last decade by LEU and HEU experiments:
 - Time-averaged yield and prompt spectrum measured to $\lesssim 1~\%$
 - ²³⁵U and ²³⁹Pu isotopic yields and unfolded spectra determined to several %
 - Can make data-based prediction of reactor antineutrino spectrum to $2\,\%$
- Expect even more progress...
 - Some current experiments are still producing results, and anticipate projects like PROSPECT II and JUNO-TAO coming online soon

Backup

Prompt Spectrum from Daya Bay

²³⁵U Spectra Uncertainties

STEREO and PROSPECT

(from M. Licciardi's talk at Moriond 2021)

Design of JUNO-TAO

arXiv:2005.08745

Detection Technology

- The three θ_{13} experiments rely on very similar detection technology
- Use Daya Bay as an example:

Energy resolution: $\sigma_{E}/E \approx 8.5\%/VE[MeV]$

veto cosmic ray muons

NIM A 811, 133 (2016)

Short Baseline Neutrino Experiments

- Main goals: Sterile neutrinos, reactor $\bar{\nu}_e$ measurements, reactor monitoring
- Rich program of ton scale detectors 6-30 m far from LEU&HEU reactors

Short Baseline Neutrino Experiments

Similar baseline, large diversity in detector design

