"Reactor Antineutrino 101"

Rachel Carr (MIT) WoNDRAM — June 21, 2021

In any reactor antineutrino experiment/application:

In any reactor antineutrino experiment/application:

Note: Do <u>not</u> always need Reactor Source & Antinu Spectrum calculations to interpret data

Reactor Source Term Calculations

• How many fissions are occurring in each isotope in the reactor (²³⁵U, ²³⁸U, ²³⁹Pu, ²⁴¹Pu, ...) per unit time?

Reactor Source Term Calculations

- Thermal power: from reactor operator
- Energy per fission: from standard measurements
- *Fission fractions:* modeled through core simulations
- Other factors:
 - Antineutrinos from spent nuclear fuel
 - Antineutrinos from β decay after n capture on fuel/non-fuel isotope

• How many antineutrinos are emitted following a fission of each isotope, and what are their energies?

• How many antineutrinos are emitted following a fission of each isotope, and what are their energies?

Two ways to approach this question:

Summation/ab initio approach: Predict all the fission fragments and β decays using nuclear databases

<u>Conversion approach:</u> Translate electron data \rightarrow antinu emission using virtual β branches

Summation/ab initio approach: Predict all the fission fragments and β decays using nuclear databases <u>Conversion approach:</u> Translate electron data \rightarrow antinu emission using virtual β branches

 $\Phi_i(E)$ = antineutrino flux from ith isotope, as function of energy

or s_i(E) = flux-averaged cross section

- Both summation & conversion approaches are challenging and imperfect at present → Wednesday of WoNDRAM
- Other factors:
 - Non-equilibrium corrections

Neutrino flavor oscillations

• Neutrinos change flavor as they propagate, because:

Neutrino flavor oscillations

• Electron antineutrinos from reactors may seem to "disappear":

Detector Response Calculations

• What is the rate and energy spectrum of antineutrino interactions in the detector (and backgrounds)?

Need to know:

- σ = cross section of interaction channel
- N_s = number of scattering centers (i.e., detector size)
- ε = signal detection efficiency
- D(E', E) = detector energy response matrix
 - B = background rates & spectra

Approaches vary by interaction channel.

Detector Response Calculations

Inverse Beta Decay (IBD): Scintillator (+ dopant), water + dopant

Coherent Elastic Neutrino-Nucleus Scattering (CEvNS) Scintillator, cryogenic bolometer, noble gas, ... *Electron Scattering (ES)* Scintillator, water

Summary

- Reactors produce \bar{v}_e from β decay of fission fragments (brightest neutrino sources on Earth; millions of reactor antineutrinos detected).
- Reactor antineutrino emission can be modeled through calculations of reactor source term, antineutrino spectrum, and detector response.
 Note: Full calculation is not always needed to interpret antinu data.
- Nuclear data is important in antineutrino spectrum calculations and may also enter reactor source term and detector response calculations.