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Reactor Source Modeling this chain, in WoNDRAM terms:
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Note: Do not always need Reactor Source & Antinu Spectrum
calculations to interpret data
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Reactor Source
Term Calculations

That said, to model all the pieces...
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Reactor Source Term Calculations

* How many fissions are occurring in each isotope in the
reactor (#3°U, 238U, 239Pu, **'Pu, ...) per unit time?

Need to know:
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Reactor Source Term Calculations

 Thermal power: from reactor operator
* Energy per fission: from standard measurements
* fission fractions: modeled through core simulations

e Other factors:
o Antineutrinos from spent nuclear fuel
o Antineutrinos from B decay after n capture on fuel/non-fuel isotope
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Antineutrino Spectrum™ Calculations (*and N per fission)

* How many antineutrinos are emitted following a fission of
each isotope, and what are their energies?

lllustration of thermal neutron
fission fragment yield

(http://hyperphysics.
phy-astr.gsu.edu)
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Antineutrino Spectrum™ Calculations (*and N per fission)

* How many antineutrinos are emitted following a fission of
each isotope, and what are their energies?

Two ways to approach this question:

Summation/ab initio approach: Conversion approach:

Predict all the fission fragments and Translate electron data =2 antinu
B decays using nuclear databases emission using virtual B branches
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Antineutrino Spectrum™ Calculations (*and N per fission)

Summation/ab initio approach: Conversion approach:
Predict all the fission fragments and Translate electron data =2 antinu
B decays using nuclear databases emission using virtual 3 branches
\ 4r
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Antineutrino Spectrum™ Calculations (*and N per fission)

* Both summation & conversion approaches are challenging
and imperfect at present 2 Wednesday of WoNDRAM

e Other factors:
o Non-equilibrium corrections
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Reactor Source
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Neutrino flavor oscillations

* Neutrinos change flavor as they propagate, because:

Flavor states > vy) = Z Usilvi) = Mass states
(interaction) i (propagation)
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Neutrino flavor oscillations

* Electron antineutrinos from reactors may seem to “disappear”:

0,5 drives reactor antineutrino flavor mixing ... 81, on distance
(“disappearance”) on distance scales O(1 km) scales O(100 km)
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Detector Response Calculations

 What is the rate and energy spectrum of antineutrino
interactions in the detector (and backgrounds)?

Need to know:

O = cross section of interaction channel
N, = number of scattering centers (i.e., detector size)
£ = signal detection efficiency
D) = detector energy response matrix
B = background rates & spectra

Approaches vary by interaction channel.
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Detector Response Calculations
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Reactor Source
Term Calculations
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summary

Reactors produce v, from B decay of fission fragments (brightest
neutrino sources on Earth; millions of reactor antineutrinos detected).

Reactor antineutrino emission can be modeled through calculations of
reactor source term, antineutrino spectrum, and detector response.

Note: Full calculation is not always needed to interpret antinu data.

Nuclear data is important in antineutrino spectrum calculations and

may also enter reactor source term and detector response calculations.

22



