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Modeling this chain, in WoNDRAM terms:
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Note: Do not always need Reactor Source & Antinu Spectrum 
calculations to interpret data  

Can often use data-driven νe info from 
near detector, another experiment, …
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That said, to model all the pieces…
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Reactor Source Term Calculations
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• How many fissions are occurring in each isotope in the 
reactor (235U, 238U, 239Pu, 241Pu, …) per unit time? 

Need to know: 
Pth =   thermal power
⟨Ef⟩ =   mean energy per fission

fi =   fission fractions à

Fission fractions in LEU reactor vs. burnup

Daya Bay 
Collaboration 

(2016)



Reactor Source Term Calculations
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• Thermal power: from reactor operator
• Energy per fission: from standard measurements
• Fission fractions: modeled through core simulations

• Other factors: 
∘ Antineutrinos from spent nuclear fuel
∘ Antineutrinos from β decay after n capture on fuel/non-fuel isotope
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Antineutrino Spectrum* Calculations (*and N per fission)
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• How many antineutrinos are emitted following a fission of 
each isotope, and what are their energies?

Illustration of thermal neutron 
fission fragment yield

(http://hyperphysics.
phy-astr.gsu.edu)



Antineutrino Spectrum* Calculations (*and N per fission)
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• How many antineutrinos are emitted following a fission of 
each isotope, and what are their energies?

Two ways to approach this question:

Summation/ab initio approach:
Predict all the fission fragments and 

β decays using nuclear databases

Conversion approach:
Translate electron data à antinu
emission using virtual β branches



Antineutrino Spectrum* Calculations (*and N per fission)
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Summation/ab initio approach:
Predict all the fission fragments and 

β decays using nuclear databases

Conversion approach:
Translate electron data à antinu
emission using virtual β branches

Φi(E) = antineutrino flux 
from ith isotope, 
as function of energy

or si(E) = flux-averaged cross section
K. Nakajima 
et al (2006)



Antineutrino Spectrum* Calculations (*and N per fission)
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• Both summation & conversion approaches are challenging 
and imperfect at present à Wednesday of WoNDRAM

• Other factors: 
∘ Non-equilibrium corrections
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Neutrino flavor oscillations
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Completing the three-neutrino mixing picture
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Mixing matrix

θ13 and θ12 drive reactor 
antineutrino flavor mixing

• Neutrinos change flavor as they propagate, because: 



Neutrino flavor oscillations
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θ13 drives reactor antineutrino flavor mixing 
(“disappearance”) on distance scales O(1 km)

… θ12 on distance 
scales O(100 km)

Distance from reactor (km)

• Electron antineutrinos from reactors may seem to “disappear”:

P. Vogel et al
(2015)+ Sterile neutrinos 

driving oscillations 
at O(1 m)??
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Detector Response Calculations
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• What is the rate and energy spectrum of antineutrino 
interactions in the detector (and backgrounds)?

Need to know: 
σ =  cross section of interaction channel              
Ns =  number of scattering centers (i.e., detector size)
ε =  signal detection efficiency

D(E’, E) =  detector energy response matrix
B =  background rates & spectra

Approaches vary by interaction channel.



Detector Response Calculations
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e—

Coherent Elastic Neutrino-
Nucleus Scattering (CEvNS)

Scintillator, cryogenic 
bolometer, noble gas, …

Inverse Beta 
Decay (IBD):

Scintillator (+ dopant),   
water + dopant

Electron
Scattering (ES)
Scintillator, water
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Reactor antineutrino-like events detected:
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Summary
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• Reactors produce νe from β decay of fission fragments (brightest 
neutrino sources on Earth; millions of reactor antineutrinos detected).

• Reactor antineutrino emission can be modeled through calculations of 
reactor source term, antineutrino spectrum, and detector response. 
Note: Full calculation is not always needed to interpret antinu data. 

• Nuclear data is important in antineutrino spectrum calculations and 
may also enter reactor source term and detector response calculations.
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